Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiểu an Phạm
Xem chi tiết
Hiếu
17 tháng 4 2018 lúc 22:09

Ta có : \(\Delta=\left(2m-1\right)^2+1>0\)

nên pt luôn có 2 nghiệm phân biệt là x1 và x2 

Theo ĐL Vi-ét ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=\frac{2m-1}{2}\end{cases}}\)=> \(4m^2=x_1^2+2x_1x_2+x_2^2\) => \(2m^2=\frac{x_1^2+2x_1x_2+x_2^2}{2}\)

=> tìm m để thoả mãn \(2x_1^2+2\cdot2mx_2+2m^2-9=2x_1^2+2\left(x_1+x_2\right)\cdot x_2+\frac{x_1^2+2x_1x_2+x_2^2}{2}-9< 0\)

<=> \(4x_1^2+4x_1x_2+4x_2^2+x_1^2+2x_1x_2+x_2^2-18< 0\)

<=> \(5x_1^2+6x_1x_2+5x_2^2-18< 0\)

<=> \(3\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-18< 0\)

<=> \(2m\left(6m+2\right)-18< 0\)

Bn tự giải tiếp nha :D

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 2 2022 lúc 0:14

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên:

\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)

Do \(x_2\) là nghiệm nên:

\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)

Bài toán trở thành:

\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)

\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)

\(\Leftrightarrow2m^2-2< 0\)

\(\Leftrightarrow-1< m< 1\)

Lộc Nguyễn Phúc
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 12:35

Lời giải:

PT có 2 nghiệm pb khi:

$\Delta'=m^2+m(2m+1)>0\Leftrightarrow m(3m+1)>0\Leftrightarrow m>0$ hoặc $m< \frac{-1}{3}(*)$

Theo định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{-(2m+1)}{m}\end{matrix}\right.\) . Khi đó:

$x_1^2+2x_1x_2^2+3x_2^2=4x_1+5x_2-1$

$\Leftrightarrow (x_1+x_2)^2+2x_2^2=4(x_1+x_2)+x_2-1$

$\Leftrightarrow 4+2x_2^2=7+x_2$

$\Leftrightarrow 2x_2^2-x_2-3=0$

$\Leftrightarrow x_2=\frac{3}{2}$ hoặc $x_2=-1$

$x_2=\frac{3}{2}$ thì $x_1=\frac{1}{2}$

$\frac{-(2m+1)}{m}=x_1x_2=\frac{3}{4}\Leftrightarrow m=\frac{-4}{11}$
$x_2=-1$ thì $x_1=3$

$\frac{-(2m+1)}{m}=x_1x_2=-3\Leftrightarrow m=1$

(hai giá trị trên đều thỏa mãn)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 2 2021 lúc 17:48

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

Hồng Phúc
16 tháng 2 2021 lúc 18:16

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

ngọc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 8:40

loading...

 

võ dương thu hà
Xem chi tiết
doantrancaotri
15 tháng 2 2017 lúc 20:32

\(\Delta=16m^2-4\cdot2\left(2m^2-1\right)=16m^2-16m^2+8=8>0\)

=> phương trình luôn có 2 nghiệm phân biệt

Mymy V
Xem chi tiết
Nguyễn Tuấn Anh
21 tháng 2 2023 lúc 13:44

2x^2  -(4m+3)x+2m^2-1=0

 

 a= 2

b = -(4m+3)

 c= 2m^2-1

Ta có: ∆=b^2-4ac

              = 〖(4m+3)〗^2-4.2.(2m^2-1)

              = 16m^2+24m+9-16m^2+8   

               = 24m +17

Để phương trình có 2 nghiệm phân biệt

=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24

Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24

https://www.youtube.com/watch?v=toNMfaR7_Ns

 

 

Nguyễn Tuấn Anh
21 tháng 2 2023 lúc 13:47

Nguyễn Tuấn Anh
21 tháng 2 2023 lúc 13:48

https://www.youtube.com/watch?v=toNMfaR7_Ns