So sánh A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.........+\dfrac{1}{n^2}\)với 1
Với mọi số tự nhiên n ≥ 2 hãy so sánh:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...\dfrac{1}{n^2}v\text{ới}1\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)
So sánh \(A\) với \(\dfrac{3}{4}\), biết \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
1/32< 1/2.3
1/42< 1/3.4
...
1/1002< 1/99.100
=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100
A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4
=> A < 3/4
Với mọi số tự nhiên n \(\ge\)2 hãy so sánh: P = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)với 1
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow P< 1\)
cho A =(\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2024^2}\))
So sánh A với \(\dfrac{1}{2}\)
Cho M = \(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-....-\dfrac{1}{2^{10}}\) . So sánh M với \(\dfrac{1}{2^{11}}\)
\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
Đặt \(N=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
\(2N=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2N-N=1-\dfrac{1}{2^{10}}\)
\(\Rightarrow N=1-\dfrac{1}{2^{10}}\)
\(\Rightarrow M=1-\left(1-\dfrac{1}{2^{10}}\right)=\dfrac{1}{2^{10}}>\dfrac{1}{2^{11}}\)
Vậy \(M>\dfrac{1}{2^{11}}\)
Câu 5 : A= \(\dfrac{1}{2}\) +\(\dfrac{1}{2^2}\)+ \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)+ ....+\(\dfrac{1}{2^{2021}}\)+\(\dfrac{1}{2^{2022}}\)và B= \(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{17}{60}\)
a) Rút gọn A
b) So sánh A và B
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )
A=\(\dfrac{2}{3\cdot7}\)+\(\dfrac{2}{7\cdot11}\)+\(\dfrac{2}{11\cdot15}\)+...+\(\dfrac{2}{n\cdot\left(n+4\right)}\)(với n thuộc n*,n lớn hơn hoặc bằng 3) .So sánh A với \(\dfrac{1}{6}\)
\(A=\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\\ =\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{n+4}\right)\\ =\dfrac{1}{2}.\dfrac{n+1}{3\left(n+4\right)}=\dfrac{n+1}{6\left(n+4\right)}\\ =\dfrac{n+4-3}{6\left(n+4\right)}=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}< \dfrac{1}{6}.\)
Giải:
A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)
A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)
A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)
A=1/2.(1/3-1/n+4)
A=1/6-1/2.(n+4)
⇒A>1/6
Chúc bạn học tốt!
so sánh A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...\(\dfrac{1}{\left(2n\right)^2}\)với \(\dfrac{1}{2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)+ \(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)
A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))
22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)
4A = 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)
4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
...................
\(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)
Cộng vế với vế ta có:
4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)
4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)
A < ( 2 - \(\dfrac{1}{n}\)): 4
A < 2 : 4 - \(\dfrac{1}{n}\) : 4
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)
Vậy A < \(\dfrac{1}{2}\)
Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)
22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)
3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)
3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)
cho A = (\(\dfrac{1}{2^2}-1\)).(\(\dfrac{1}{3^2}-1\)).(\(\dfrac{1}{4^2}-1\)).....(\(\dfrac{1}{100^2}-1\))
so sánh A với -\(\dfrac{1}{2}\)
b)Tìm số nguyên tố x,y sao cho \(x^2\)+117=\(^{y^2}\)
a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)
Áp dụng bổ đề trên ta có:
\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)
b)
TH1: x chẵn mà x là số nguyên tố => x=2
=> y^2 = 117+4=121 => y=11 (thỏa mãn)
TH2: x lẻ => x^2 lẻ . Mà 117 lẻ
=> x^2+117 chẵn => y^2 chẵn => y chẵn mà y là số nguyên tố
=> y=2
=>x^2+117= 4=> x^2 = -113 (vô lý)
Vậy x=2;y=11
\(S=\dfrac{2}{2021+1}+\dfrac{2^2}{2021^2+1}+\dfrac{2^3}{2021^{2^2}+1}+...+\dfrac{2^{n+1}}{2021^{2^n}+1}+...+\dfrac{2^{2021}}{2021^{2^{2020}}+1}\)
So sánh S với \(\dfrac{1}{1010}\)