Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn acc 2
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 17:55

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)

Nguyễn Lê Phương Linh
Xem chi tiết
Duy Nhật
1 tháng 11 2023 lúc 19:52

1/32< 1/2.3

1/42< 1/3.4

...

1/1002< 1/99.100

=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100

A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100

A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4

=> A < 3/4

Thanh Tu Nguyen
Xem chi tiết
Yen Nhi
9 tháng 2 2023 lúc 22:03

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

...

\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)

\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)

\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow P< 1\)

Nguyễn Viết Tùng
Xem chi tiết
crewmate
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 16:16

\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

Đặt \(N=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)

\(2N=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2N-N=1-\dfrac{1}{2^{10}}\)

\(\Rightarrow N=1-\dfrac{1}{2^{10}}\)

\(\Rightarrow M=1-\left(1-\dfrac{1}{2^{10}}\right)=\dfrac{1}{2^{10}}>\dfrac{1}{2^{11}}\)

Vậy \(M>\dfrac{1}{2^{11}}\)

Phùng Thị Kiều Chinh
Xem chi tiết
Minh Hiếu
6 tháng 5 2022 lúc 21:58

a) \(A=2A-A\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1-\dfrac{1}{2^{2022}}\)

b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)

\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)

 

haanh1610
6 tháng 5 2022 lúc 22:02

a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )

khôi
Xem chi tiết
Ngoc Anh Thai
8 tháng 5 2021 lúc 13:49

\(A=\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\\ =\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{n+4}\right)\\ =\dfrac{1}{2}.\dfrac{n+1}{3\left(n+4\right)}=\dfrac{n+1}{6\left(n+4\right)}\\ =\dfrac{n+4-3}{6\left(n+4\right)}=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}< \dfrac{1}{6}.\)

 

Giải:

A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)

A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)

A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)

A=1/2.(1/3-1/n+4)

A=1/6-1/2.(n+4)

⇒A>1/6

Chúc bạn học tốt!

Nguyễn Nam Khánh
Xem chi tiết

A   = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)

A  =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)\(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))

22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)

     4A =  1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)

     4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)

       1   = 1

     \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

      \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

     ...................

 \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)

Cộng vế với vế ta có: 

4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)\(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)

4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)

A < ( 2 - \(\dfrac{1}{n}\)): 4 

A < 2 : 4 - \(\dfrac{1}{n}\) : 4

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)

Vậy A < \(\dfrac{1}{2}\) 

 

 

nguyễn thị kim ngân
7 tháng 4 2023 lúc 8:55

Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)

            22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)

            3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)

          3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)

Moon
Xem chi tiết
HT2k02
10 tháng 4 2021 lúc 21:54

a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)

Áp dụng bổ đề trên ta có:

\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)

 

HT2k02
10 tháng 4 2021 lúc 22:02

b)

TH1: x chẵn  mà x là số nguyên tố => x=2

=> y^2 = 117+4=121 => y=11 (thỏa mãn)

TH2:  x lẻ => x^2 lẻ  . Mà 117 lẻ

=> x^2+117 chẵn => y^2 chẵn => y chẵn mà y là số nguyên tố

=> y=2 

=>x^2+117= 4=> x^2 = -113 (vô lý)

Vậy x=2;y=11

Ngô Anh Hiếu
Xem chi tiết