Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Trọng tâm G. Tính GA,GB,GC
GIÚP MK VỚI
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Trọng tâm G. Tính GA,GB,GC
GIÚP MK VỚI
BC = \(\sqrt{8^2+6^2}\)= 10 cm
trung truyến AM = BC/2 = 5cm
AG = 2AM/3 = 10/3 cm.
trung tuyến BN = \(\sqrt{\frac{2BC^2+2BA^2-AC^2}{4}}\)= \(\sqrt{\frac{2\left(10^2+6^2\right)-8^2}{4}}\)
BG = 2BN/3
trung tuyến CP = \(\sqrt{\frac{2BC^2+2AC^2-AB^2}{4}}\)= \(\sqrt{\frac{2\left(10^2+8^2\right)-6^2}{4}}\)
BG = 2CP/3
Cho tam giác ABC vuông tại A. Có AB=16cm, AC=30cm, G là trọng tâm của tam giác ABC. Tính GA+GB+GC?
Cho tam giác ABC có AB = AC =5cm; BC =8cm. Gọi G là trọng tâm cụa tam giác .Tính GA, GB, GC
Gọi `AM` là trung tuyến của `ΔABC`
`=>AM` đồng thời là đường cao
`=>ΔAMB;ΔAMC⊥M`
`AM` là trung tuyến nên
`BM=MC=(BC)/2=4(cm)`
Áp dụng định lý py-ta-go ta tính được
`AM^2=AB^2-BM^2=5^2-4^2=25-16=9(cm)`
`=>AM=3cm`
`G` trọng tâm
`=>GA=2/3AM=2cm`
`GM=1/3AM=1cm`
Áp dụng định lý py-ta-go lần nữa ta tính đc
`GC^2=BG^2=BM^2+GM^2=4^2+1^2=16+1=17cm`
`=>GB=GC=`\(\sqrt{17cm}\)
Cho tam giác ABC vuông tại A có AB = a; BC = 2a và G là trọng tâm.
Tính giá trị của biểu thức G A → . G B → + G B → . G C → + G C → . G A
A. -3a2
B. -2a2
C. -4 a2/3
D. 2a2
Chọn C.
Vì nên
Gọi M, N, P lần lượt là trung điểm của BC, CA, AB
Tam giác ABM đều nên
Theo định lý Pitago ta có:
Suy ra
Cho tam giác ABC có AB = AC =5cm; BC =8cm. Gọi G là trọng tâm cụa tam giác .Tính GA, GB, GC
Cho tam giác ABC vuông tại A có AB=5cm;BC=13cm. Gọi G là trọng tâm của tam giác ABC.Tính GA+GB+GC
Giúp mình nha
cho tam giác ABC vuông góc tại A . AB=6cm,AC=8cm . Trung tuyến AM và BN cắt nhau tại G.
a) Chứng minh AM =1/2 BC
b) Tính GA,GB,GC
A)
Nhắc lại: -Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền
Xét \(\Delta ABC\)vuông tại A
Có AM là trung tuyến
=> \(AM=\frac{1}{2}BC\left(đpcm\right)\)
b) Xét \(\Delta ABC\)vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
\(\Leftrightarrow BC^2=6^2+8^2\Leftrightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì \(AM=\frac{1}{2}BC\)
\(\Leftrightarrow AM=\frac{1}{2}.100\Leftrightarrow AM=50\left(cm\right)\)
Ta có hai đường trung tuyến Am và BN cắt nhau tại G
=> G là trọng tâm tam giác ABC
\(\Rightarrow AG=\frac{2}{3}AM\)
\(\Leftrightarrow AG=\frac{2}{3}.50\Leftrightarrow AG\approx33,3\left(cm\right)\)
mình làm tiếp trang khác
a) Xét \(\text{∆}ABC\)vuông tại A
Vì AM là đường trung tuyến từ đỉnh A đến trung điểm cạnh huyền BC
=> \(AM=\frac{1}{2}BC\)(theo tính chất đường trung tuyến trong tam giác vuông) (đpcm)
b) Tính cạnh GA
Xét \(\text{∆}ABC\)vuông tại A
Theo định lí PYTAGO, ta có:
\(BC^2=AC^2+AB^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=\sqrt{100}=10\left(cm\right)\)
Mà \(AM=\frac{1}{2}BC\)nên:
\(AM=\frac{1}{2}BC=\frac{1}{2}.10=5\left(cm\right)\)
Vì BN và AM là hai đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)
Ta có: \(GA=\frac{2}{3}AM\)nên:
\(GA=\frac{2}{3}AM=\frac{2}{3}.5\approx3,3\left(cm\right)\)
Tính cạnh GB:
Xét \(\text{∆}ABC\)vuông tại A, ta có:
BN là đường trung tuyến của \(\text{∆}ABC\)nên:
\(CN=NA\)
=> \(NA=\frac{1}{2}AC=\frac{1}{2}.4=2\left(cm\right)\)
Xét \(\text{∆}ANB\)vuông tại A
Theo định lý PYTAGO, ta có:
\(BN^2=NA^2+AB^2\)
\(BN^2=2^2+6^2\)
\(BN^2=4+36\)
\(BN^2=40\)
\(BN=\sqrt{40}\approx6,3\left(cm\right)\)
Ta lại có:
\(GB=\frac{2}{3}BN=\frac{2}{3}.6,3=4,2\left(cm\right)\)
Tính cạnh GC:
Trong \(\text{∆}ABC\), vẽ đường trung tuyến từ C xuống trung điểm của AB, gọi D là trung điểm của cạnh AB
Vì CD là đường trung tuyến của \(\text{∆}ABC\)nên:
\(AD=DB\)
=> \(AD=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
Xét \(\text{∆}CAD\)vuông tại A
Theo định lí PYTAGO, ta có:
\(CD^2=AC^2+AD^2\)
\(CD^2=8^2+3^2\)
\(CD^2=64+9\)
\(CD^2=73\)
\(CD=\sqrt{73}=8,5\left(cm\right)\)
Ta lại có:
\(GC=\frac{2}{3}CD=\frac{2}{3}.8,5\approx5,7\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AM là đường trung tuyến. Trên tia đối của tia MA, lấy hai điểm D và K sao cho MA=MK và GA=GD ( G là trọng tâm của tam giác ABC)
a) C/m AM=1/2 BC. Tính độ dài đoạn GA,GM biết rằng AB= 6cm, AC=8cm
b) C/m BD=GC
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Cho \(\Delta ABC\)có AB=AC=5cm, BC=8cm. Gọi G là trọng tâm của tam giác ABC. Tính GA;GB;GC
Bài làm:
Kẻ trung tuyến AM, CN của tam giác ABC
Vì AB = AC = 5cm => Tam giác ABC cân tại A
=> AM đồng thời là đường cao của tam giác ABC
=> AM _|_ BC
Vì M là trung điểm của BC => BM = MC = BC/2 = 4cm
Áp dụng định lý Pytago ta tính được: \(AM^2=AB^2-BM^2=5^2-4^2=9cm\)
=> AM = 3cm
=> GA = 2/3AM = 2cm ; GM = 1cm
Áp dụng Pytago lần nữa ta tính được:
\(GC^2=BG^2=BM^2+GM^2=4^2+1^2=17\)
=> \(GB=GC=\sqrt{17}cm\)
Cho tam giác đều ABC cạnh a, đường cao AH, trọng tâm G. Tính:
a, |AC|, |AB + AH|, |AB - AH|
b, |GB|, |GA + GB|, |GA + GB + GC|