Tính :
A = 1 - \(\dfrac{4}{5.7}-\dfrac{4}{5.9}-\dfrac{4}{9.11}-......-\dfrac{4}{59.61}\)
\(a)\dfrac{11}{5.7}+\dfrac{11}{7.9}+\dfrac{11}{9.11}+...+\dfrac{11}{59.61} \)
`11/(5.7) + 11/(7.9) + 11/(9.11) + ... + 11/(59.61)`
`= 2.(11/(5.7) + 11/(7.9) + ... + 11/(59.61))`
`= 11.(2/(5.7) + 2/(7.9) + ... + 2/(59.61))`
`= 11.(1/5 - 1/7 + 1/7 - 1/9 + ... +1/59 - 1/61)`
`= 11.(1/5 - 1/61)`
`= 11.56/305`
`= 616/305`
`11/(5.7) + 11/(7.9) + 11/(9.11) + ... + 11/(59.61)`
`= 2.(11/(5.7) + 11/(7.9) + ... + 11/(59.61))`
`= 11.(2/(5.7) + 2/(7.9) + ... + 2/(59.61))`
`= 11.(1/5 - 1/7 + 1/7 - 1/9 + ... +1/59 - 1/61)`
`= 11.(1/5 - 1/61)`
`= 11.56/305`
`= 616/305`
`= 616/305 : 2`
`= 308/305`
So sánh:
A = \(\dfrac{3^2}{2.5}+\dfrac{3^2}{5.8}+\dfrac{3^2}{8.11}\) và B = \(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
So sánh: A =\(\dfrac{3^2}{2.5}+\dfrac{3^2}{5.8}+\dfrac{3^2}{8.11}\) và B \(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
Tính giá trị các biểu thức:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)
A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))
A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))
=2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)
Tính \(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)
Ta có :
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)
Chúc bn học tốt!!
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(A=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(A=2.\dfrac{56}{305}\)
\(A=\dfrac{112}{305}\)
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}..........+\dfrac{4}{59.61}\)
\(\dfrac{1}{2}A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+.........+\dfrac{2}{59.61}\)
\(\dfrac{1}{2}A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{1}{2}A=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{1}{2}A=\dfrac{56}{305}\)
\(A=\dfrac{112}{305}\)
A=\(\dfrac{4}{3.5}-\dfrac{6}{5.7}+\dfrac{8}{7.9}-\dfrac{10}{9.11}+\dfrac{12}{11.13}-...-\dfrac{100}{99.100}\)
Tính giá trị của A
tính
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)
\(T=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{59\cdot61}\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\right)\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)
\(=3.\left(\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+...+\dfrac{1}{59.61}\right)\)
\(=3.\dfrac{1}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}.\dfrac{56}{305}\)
\(=\dfrac{84}{305}\)
=1/5-1/7+1/7-1/9+1/9-1/11+...+1/59-1/61
=1/5-1/61
=56/305
Tính một cách hợp lí :
a) \(4\dfrac{3}{4}+\left(-0.37\right)+\dfrac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\dfrac{1}{12}\)
b) \(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
c) \(\dfrac{\dfrac{5}{22}+\dfrac{3}{13}-\dfrac{1}{2}}{\dfrac{4}{13}-\dfrac{2}{11}+\dfrac{3}{2}}\)
Tính giá trị các biểu thức:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
Ta có:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{6}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)