Cho hai đường thẳng (d1):y=3x+5m+2 và (d2):y=7x−3m−6
Tọa độ giao điểm A của (d1) và (d2) là:
Cho hai đường thẳng được xác định bởi
(d1): y=3x+5m+2 và (d2): y=7x-3m-6
a) xác định tọa độ giao điểmA của (d1) và (d2) khi m=0
b) CMR khi m thay đổi giao điểm A luôn chạy trên 1 đường thẳng
Cho hai đường thẳng (d1): 3x - 5y = 1, (d2): y = 4x - 1
Tọa độ giao điểm của 2 đường thẳng (d1) và (d2) là
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng d1: mx + y = 3m – 1 và d2: x + my = m + 1.
a) Tìm tọa độ giao điểm của d1 và d2 khi m = 2.
b) Tìm m để d1 và d2 song song? Tìm m để d1 và d2 trùng nhau?
c) Tìm m để d1 cắt d2 tại điểm có tọa độ (x ; y) sao cho biểu thức P = xy đạt giá trị nhỏ nhất
\(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)
\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)
Thay m = 2 vào phương trình đường thẳng d1 ta có:
\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)
Thay m = 2 vào phương trình đường thẳng d2 ta có:
\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)
Xét phương trình hoành độ giao điểm của d1 và d2 ta có:
\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)
\(\Rightarrow y=\dfrac{1}{3}.\)
Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)
Cho 2 đường thẳng: y= -3x -7 (d1) và y=2x+3 (d2)
Tìm tọa độ giao điểm M của hai đường thẳng (d1) , (d2)
Gọi \(A\left(x_0;y_0\right)\) là giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y_0=-3x_0-7\\y_0=2x_0+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{4}{5}\\y_0=-\dfrac{23}{5}\end{matrix}\right.\)
\(\Rightarrow M\left(-\dfrac{4}{5};-\dfrac{23}{5}\right)\)
Cho hai đường thẳng: y = x + 3 (d1); y = 3x + 7 (d2)
a/ Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Oy.
Tìm tọa độ trung điểm I của đoạn thẳng AB.
b/ Gọi J là giao điểm của (d1) và (d2). Tam giác OIJ là tam giác gì? Tính diện tích của tam giác đó.
a: Tọa độ của điểm A là:
\(\left\{{}\begin{matrix}x_A=0\\y_A=0+3=3\end{matrix}\right.\)
Vậy: A(0;3)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=3\cdot0+7=7\end{matrix}\right.\)
Vậy: B(0;7)
Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x_I=\dfrac{0+0}{2}=0\\y_I=\dfrac{3+7}{2}=5\end{matrix}\right.\)
Vậy: I(0;5)
b: Tọa độ điểm J là:
\(\left\{{}\begin{matrix}3x+7=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy: J(-2;1)
I(0;5)
O(0;0)
\(OI=5\)
\(OJ=\sqrt{\left[0-\left(-2\right)\right]^2+\left(0-1\right)^2}=\sqrt{5}\)
\(JI=\sqrt{\left(0+2\right)^2+\left(5-1\right)^2}=2\sqrt{5}\)
Vì \(OI^2=OJ^2+JI^2\)
nên ΔOIJ vuông tại J
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng (d1): y = -1/3x và (d2): y = 3x-2.
1)Vẽ (d1) và (d2) trên cùng hệ trục.
2) Bằng phép tính tìm tọa độ giao điểm của (d1) và (d2).
3) Cho đường thẳng (d3): y=ax+b. Xác định a và b biết (d3) song song với (d2) và cắt (d1) tại điểm có hoành độ bằng 2.Giup minh voi a!
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng d1: mx + y = 3m – 1 và d2: x + my = m + 1.
a) Tìm tọa độ giao điểm của d1 và d2 khi m = 2
Thay m = 2 ta được (d1) : 2x + y = 5
<=> (d) : y = 5 - 2x
Thay m = 2 ta được
(d2) : x + 2y = 3 <=> (d2) : y = \(\dfrac{3-x}{2}\)
Hoành độ giao điểm tm pt
\(5-2x=\dfrac{3-x}{2}\Leftrightarrow10-4x=3-x\Leftrightarrow-3x=-7\Leftrightarrow x=\dfrac{7}{3}\)
=> y = 1/3
Vậy với m = 2 (d1) cắt (d2) tại A(7/3;1/3)
Cho đường thẳng : (d1) : y = (1 - 3m)x - 2
(d2) : y = 2x + m - 3
Khi m = 1
Vẽ (d1) ; (d2) trên cùng một hệ trục tọa độ , tìm giao điểm A . Xác định B và C là giao điểm của (d1) ; (d2) với trục hoành
+ Tính diện tích và chu vi tam giác ABC
+ Tính góc tọa bởi đường thẳng (d2) và trục hoành
\(m=1\Leftrightarrow\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=2x-2\end{matrix}\right.\\ \text{PTHDGD: }-2x-2=2x-2\Leftrightarrow x=0\Leftrightarrow y=-2\Leftrightarrow A\left(0;-2\right)\\ \text{PT giao Ox: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=-1\Leftrightarrow B\left(-1;0\right)\Leftrightarrow OB=1\\y=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\Leftrightarrow OC=1\end{matrix}\right.\\ \Leftrightarrow BC=1+1=2\\ AB=AC=\sqrt{2^2+1^2}=\sqrt{3}\\ OA=\left|-2\right|=2\\ \Leftrightarrow P_{ABC}=AB+BC+CA=2+2\sqrt{3}\left(đvd\right)\\ S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{1}{2}\cdot2\cdot2=2\left(đvdt\right)\)
Gọi góc đó là \(\alpha\)
Vì \(2>0\Leftrightarrow\alpha< 90^0\)
\(\tan\alpha=2\Leftrightarrow\alpha\approx63^0\)
Cho 2 đường thẳng (d1) y=1/3x+m+1/3 và (d2) y=2x-6m+5.a, Tìm tọa độ giao điểm của (d1) và(d2). b, Tìm m để giao điểm của (d1) và (d2) nằm trên parabol y=9x²
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{3}x+m+\dfrac{1}{3}=2x-6m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{3}x=-7m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{5}m-3\\y=\dfrac{1}{3}\left(\dfrac{21}{5}m-3\right)+m+\dfrac{1}{3}=\dfrac{7}{5}m-1+m+\dfrac{1}{3}=\dfrac{12}{5}m-\dfrac{2}{3}\end{matrix}\right.\)
b: Theo đề, ta có: \(\dfrac{12}{5}m-\dfrac{2}{3}=9\cdot\left(\dfrac{21}{5}m-3\right)^2\)
Đến đây bạn chỉ cần giải phương trình bậc hai ra thôi