a: Tọa độ của điểm A là:
\(\left\{{}\begin{matrix}x_A=0\\y_A=0+3=3\end{matrix}\right.\)
Vậy: A(0;3)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=3\cdot0+7=7\end{matrix}\right.\)
Vậy: B(0;7)
Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x_I=\dfrac{0+0}{2}=0\\y_I=\dfrac{3+7}{2}=5\end{matrix}\right.\)
Vậy: I(0;5)
b: Tọa độ điểm J là:
\(\left\{{}\begin{matrix}3x+7=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy: J(-2;1)
I(0;5)
O(0;0)
\(OI=5\)
\(OJ=\sqrt{\left[0-\left(-2\right)\right]^2+\left(0-1\right)^2}=\sqrt{5}\)
\(JI=\sqrt{\left(0+2\right)^2+\left(5-1\right)^2}=2\sqrt{5}\)
Vì \(OI^2=OJ^2+JI^2\)
nên ΔOIJ vuông tại J