Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Love Math
Xem chi tiết
Hỏa Hỏa
Xem chi tiết
Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Xem chi tiết

Hôm nay olm sẽ hướng dẫn các em mẹo giải các bài toán dạng này như sau:

Ta thấy vế phải  là \(\dfrac{1}{2}\) thì vế trái sẽ ≤ \(\dfrac{1}{2}\) - a ( a > 0)

Em biến đổi mẫu số các phân số lần lượt thành lũy thừa của các số tự nhiên liên tiếp. Sau đó rút gọn tổng các phân số đó thì sẽ chứng minh được em nhé.

A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)

A = \(\dfrac{1}{\left(1.2\right)^2}\)+\(\dfrac{1}{\left(2.2\right)^2}\)+\(\dfrac{1}{\left(2.3\right)^2}\)+...+\(\dfrac{1}{\left(2.50\right)^2}\)

A = \(\dfrac{1}{1^2.2^2}\)+\(\dfrac{1}{2^2.2^2}\)+\(\dfrac{1}{2^2.3^2}\)+...+\(\dfrac{1}{2^2.50^2}\)

A = \(\dfrac{1}{2^2}\)\(\times\)(\(\dfrac{1}{1^2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{50^2}\))

A = \(\dfrac{1}{4}\) \(\times\)(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+...+\(\dfrac{1}{50.50}\))

Vì \(\dfrac{1}{1}\)\(\dfrac{1}{2}\)>\(\dfrac{1}{3}\)>\(\dfrac{1}{4}\)>...>\(\dfrac{1}{50}\) 

⇒ \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{50.50}\)<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...\(\dfrac{1}{49.50}\)

A = \(\dfrac{1}{4}\).(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+\(\dfrac{1}{4.4}\)+..+\(\dfrac{1}{50.50}\)) < \(\dfrac{1}{4}\) .(1+\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+..+\(\dfrac{1}{49.50}\))

A < \(\dfrac{1}{4}\).(1+\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\))

A<\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{50}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{200}\) < \(\dfrac{1}{2}\)

Vậy A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\) ( đpcm)

Jenny Phạm
Xem chi tiết
nguyễn Thị Bích Ngọc
22 tháng 3 2017 lúc 22:32

bài này có trong sách Nâng cao và Phát triển bạn nhé

Phan Thanh Bình
Xem chi tiết
Xuân Tuấn Trịnh
28 tháng 4 2017 lúc 12:29

a)\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2-1}+\dfrac{1}{4^2-1}+...+\dfrac{1}{100^2-1}\)

\(A< \dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)

\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}< \dfrac{50}{100}=\dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\)

b)B=\(\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{2499}{2500}\)

49-B=\(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

\(49-B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(49-B< 1-\dfrac{1}{50}< 1\Leftrightarrow49< 1+B\Leftrightarrow B>48\)(ĐPCM)

Nguyễn Thanh Hằng
28 tháng 4 2017 lúc 12:28

b) Đặt :

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+............+\dfrac{2499}{2500}\)

\(\Rightarrow A=\dfrac{4}{4}-\dfrac{1}{4}+\dfrac{9}{9}-\dfrac{1}{9}+.........+\dfrac{2500}{2500}-\dfrac{1}{2500}\)

\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...........+1-\dfrac{1}{50^2}\)

\(A=\left(1+1+....+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)(\(49\) chữ số \(1\))

\(A=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{50^2}\right)\)

Lại có :

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)

Mà :

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)>-1\)

\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+............+\dfrac{1}{50^2}\right)>49-1\)\(=48\)

\(\Rightarrow A>48\) \(\rightarrowđpcm\)

Lê Vũ Anh Thư
Xem chi tiết
Hoang Hung Quan
28 tháng 3 2017 lúc 8:59

Ta có:

\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)

\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)

\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)

\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))

\(\Rightarrow100=100\)

Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)

bin sky
Xem chi tiết
Nguyễn Thế Trình
5 tháng 5 2021 lúc 20:31

Dễ quá

Nguyễn Trần Minh Châu
5 tháng 5 2021 lúc 20:32

ohh

bin sky
5 tháng 5 2021 lúc 20:34

Giúp mình

Tùng Trương Quang
Xem chi tiết
Nguyễn An Ninh
25 tháng 4 2023 lúc 9:56

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

Nguyễn An Ninh
25 tháng 4 2023 lúc 9:57

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2