A=1/22+1/32+1/42+...+1/982+1/992
Ta thấy:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
...
1/1002=1/100.100 < 1/99.100
A<1/1.2+1/2.3+1/3.4+...+1/99.100
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A<1/1-1/100
A<99/100
Mk mới làm đc tới đây thôi!
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A< \dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{3}{4}-\dfrac{1}{100}< \dfrac{3}{4}\) (đpcm)