Cho tam giác ABC , điểm M nằm bên trong tam giác ABC . BM cắt AC tại D . Chứng minh rằng : MA +MB +MC <AB +AC +BC
Cho điểm M nằm trong tam giác ABC. 1) So sánh AB với MA + MB . 2) CMR: AB + AC + BC < 2(MA + MB + MC) . 3) Chứng minh rằng MA + MB +MC lớn hơn nửa chu vi tam giác ABC.
Cho tam giác ABC có M nằm trong tam giác. BM cắt AC tại I.
a) C/m MA+MB < IA+IB.
b) C/m IA+IB<CA+CB.
c) C/m MA+MB+MC<AB+AC+BC.
a) xét tam giác MIA có: MA < MI+IA (bđt tam giác)
=> MA+MB < MI+IA+MB
=> MA+MB < (MI+MB)+IA
=> MA+MB < IB+IA (1)
b) xét tam giác BIC có: IB < IC+CB (bđt tam giác)
=> IB+IA < IC+CB+IA
=> IB+IA < (IC+IA)+CB
=> IB+IA < CA+CB (2)
c) từ (1) và (2) => MA+MB < CA+CB
Cho tam giác ABC có M nằm trong tam giác. BM cắt AC tại I.
a) C/m MA+MB < IA+IB.
b) C/m IA+IB<CA+CB.
c) C/m MA+MB+MC<AB+AC+BC.
Cho tam giác ABC cân tại A và M là một điểm nằm bên trong tam giác ABC sao cho góc AMB lớn hơn góc AMC . Chứng minh : DC = MB, BM< MC
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
cho tam giacs ABC. M là điểm nằm trong tam giác ABC. Đường thẳng qua M song song với BC cắt AB ở D, đường thẳng qua M song song với AC cắt BC ở E, đường thẳng qua M song song với Ab cắt Ac ở F
a) Chứng minh rằng các tứ gác ADMF,BDME, CÈM là các hình thang cân
b) Chứng minh rằng | MB-MC | < MA,MB +MC
c) Xác định ví trí điểm M để tam giác DE là tam giác đều
Cho tam giác ABC , đường trung tuyến BD và CE cắt tại G, biết BD=CE
a) Chứng minh AG vuông góc với BC
b) Cho M là một điểm nằm trong tam giác.
chứng minh : MA + MB + MC > AB + BC+ AC : 2
Cho tam giác ABC. Điểm M nằm trong tam giác ABC. BM cắt AC tại D
a. CM: MB+MC<BD+CD
b. So Sánh: BD+CD với AB+AC
c. CM:MB+MC<AB+AC
d. So sánh : MA+MB+MC và AB+AC+BC
Nhanh lên mình cần gấp!
Cho điểm M nằm trong tam giác ABC. Chứng minh rằng tổng MA + MB + MC lớn hơn nửa chu vi tam giác ABC.
Trong ΔAMB, ta có:
MA + MB > AB (bất đẳng thức tam giác) (1)
Trong ΔAMC, ta có:
MA + MC > AC (bất đẳng thức tam giác) (2)
Trong ΔBMC, ta có:
MB + MC > BC (bất đẳng thức tam giác) (3)
Cộng từng vế (1), (2) và (3), ta có:
MA + MB + MA + MC + MB + MC > AB + AC + BC
⇔ 2(MA + MB + MC) > AB + AC + BC
Vậy MA + MB + MC > (AB + AC + BC) / 2