Cho tam giác ABC có AB>AC.AD là tia phân giác của góc BAC (D thuộc BC). M là điểm nằm trên đoạn thẳng AD. CMR: MB-MC<AB-AC
Cho tam giác ABC có AB> AC. Tia phân giác góc BAC cắt Bc ở D. Lấy M là 1 điểm thộc đoạn thẳng AD.
CMR: MB-MC< AB-AC
Cho tam giác ABC có AB <AC, AD là tia phân giác của góc BAC (D thuộc BC), M nằm giữa A và D.
a) CMR: BD <BC
b)CMR: MC-MB<AC-AB
cho tam giác abc có ab>ac,ad là tia phân giác của góc bac.[d thuộc bc] m là một điểm nằm trên đoạn thẳng ad
Cho tam giác ABC ( AC > AC ) , tia phân giác của góc BAC cắt BC tại D , điểm M nằm trên đoạn thẳng AD. Chứng minh rằng AB - AC > MB - MC
Cho tam giác abc có ab >ac. Tia phân giác bac cắt bc tại d. M là điểm nằm trên tia pg đó. Cmr ab-ac>mb-mc
Cho tam giác ABC có AB > AC, tia phân giác của góc A cắt BC tại D. Gọi M là một điểm nằm trên đoạn AD. C/minh: AB - AC > MB - MC
Cho tam giác ABC có AB AC , AD là tia phân giác của góc A , M là điểm thuộc đoạn thẳng AD. Chứng minh MB – MC AB – AC.
Cho tam giác ABC có AB < AC. Kẻ AD vuông góc với BC (D thuộc BC). Lấy M là trung điểm của AD. Trên tia đối của tia MB lấy E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC.
a. CMR: AE = BD
b. So sánh AC và BD.
c. CMR: A, E, F thẳng hàng.
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hình bình hành
=>AE=DB và AE//DB
=>AE//BC
b: BD=AE
mà AE<AC
nên BD<AC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
mà AE//DC
nên A,E,F thẳng hàng
Cho tam giác ABC có AB= AC. Gọi M là một điểm nằm trong tam giác sao cho MB= MC; N là trung điểm của BC. Chứng minh rằng:
a)Tam giác ABM= tam giác ACM
b) AM là tia phân giác của góc BAC
c) Ba điểm A, M, N thẳng hàng
d) AM là đường trung trực của đoạn thẳng BC
a, xét tam giác ABM và tam giác ACM có:
AB=AC
AM chung
BM=CM
=> tam giác ABM= tam giác ACM (c.c.c)
b,
Tam giác ABM= tam giác ACM => góc BAM= góc CAM
=> AM là tia phân giác của góc BAC
c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC
=> A, M, N thẳng hàng