Cho a,b,c thuon N sao
Va S=\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
CMR S>bang6
Cho a,b,c thuoc N va s= \(\dfrac{a+b}{c}\)+\(\dfrac{b+c}{a}\)+\(\dfrac{c+a}{b}\) CMR: S>hoac =6
mô đây , đi hc thêm à chớ bài thầy hải ko có hay BDHSG
Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.
Cho a,b,c \(\in\) N* và S=\(\dfrac{a+b}{c}+\dfrac{b+c}{a}\dfrac{c+a}{b}\)
a,CMR S\(\ge\)6
b,Tìm giá trị nhỏ nhất của S
a)\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)
Áp dụng BĐT cosi:
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\)
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)
=>S\(\ge\)6
Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{b}{a}\\\dfrac{c}{b}=\dfrac{b}{c}\end{matrix}\right.\)<=>a=b=c
b)S\(\ge\)6
=>GTNN của S=6 xảy ra khi a=b=c
Cho S = \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)với a, b,c dương
CMR: S>2
Bạn tìm câu hỏi tương tự có bài giống như vậy nè : https://hoc24.vn/hoi-dap/question/411105.html
Cho a,b,c là các số thực dương. CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)
Áp dụng bđt Cauchy-Schwarz:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{\left(1+1\right)^2}{c+a}=\dfrac{4}{c+a}\)
Cộng theo vế và rút gọn suy ra đpcm
\("="\Leftrightarrow a=b=c\)
B1: Cho \(0\le a,b,c\le2\) thỏa mãn \(a+b+c=3\). CMR: \(a^2+b^2+c^2\le5\)
B2: Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2=a+b\). TÌm GTLN \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
B3: CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
cho các số a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
cmr: \(\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}=\dfrac{1}{a^{2017}+b^{2017}+c^{2017}}\)
Cho a,b,c>0.Cmr
\(1< \dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{b^2+c^2}}+\dfrac{c}{\sqrt{c^2+a^2}}\le\dfrac{3\sqrt{2}}{2}\)
P/s: nhân tiện làm rõ giùm BĐT \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)(với \(a\ge b\ge c\))
làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)
\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)
\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)
ok thỏa thuận rồi tui làm nửa sau thui nhé :D
Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:
\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)
Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:
\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)
\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
Vì \(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)
Can you continue
Cho M = \(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+d+c}\) (a,b,c thuộc N sao)
CMR: M ko là số tự nhiên
Lời giải:
Ta có:
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+d+c}\)
\(> \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Leftrightarrow M>\frac{a+b+c+d}{a+b+c+d}=1(1)\)
Mặt khác:
\(M=1-\frac{b+c}{a+b+c}+1-\frac{a+d}{a+b+d}+1-\frac{b+d}{b+c+d}+1-\frac{a+c}{a+d+c}\)
\(\Leftrightarrow M=4-\underbrace{\left(\frac{b+c}{a+b+c}+\frac{a+d}{a+b+d}+\frac{b+d}{b+c+d}+\frac{a+c}{a+d+c}\right)}_{N}\)
Có: \(N>\frac{b+c}{a+b+c+d}+\frac{a+d}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{a+c}{a+b+c+d}\)
\(\Leftrightarrow N>\frac{2(a+b+c+d)}{a+b+c+d}=2\)
\(\Rightarrow M=4-N< 4-2\Leftrightarrow M< 2(2)\)
Từ \((1);(2)\Rightarrow 1< M< 2\Rightarrow M\not\in \mathbb{N}\)
CHo a+b+c=1 (a,b,c>0) CMR:
S=\(\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ac}{\sqrt{b+ac}}+\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\)