Những câu hỏi liên quan
Nguyễn Đức Lâm
Xem chi tiết
Aurora
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 22:07

Đặt b + c - a = x; c + a - b = y; a + b - c = z. (x, y, z > 0)

Ta có \(A=\dfrac{a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{9c}{a+b-c}=\dfrac{y+z}{2x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{9\left(x+y\right)}{2z}=\left(\dfrac{y}{2x}+\dfrac{2x}{y}\right)+\left(\dfrac{z}{2x}+\dfrac{9x}{2z}\right)+\left(\dfrac{9y}{2z}+\dfrac{2z}{y}\right)\ge2\sqrt{\dfrac{y}{2x}.\dfrac{2x}{y}}+2\sqrt{\dfrac{z}{2x}.\dfrac{9x}{2z}}+2\sqrt{\dfrac{9y}{2z}.\dfrac{2z}{y}}=2+3+6=11\).

Dấu "=" xảy ra khi và chỉ khi \(3y=2z=6x\Leftrightarrow3\left(c+a-b\right)=2\left(b+c-a\right)=6\left(a+b-c\right)\)

\(\Leftrightarrow a=\dfrac{5}{6};b=\dfrac{2}{3};c=\dfrac{1}{2}\).

 

Lenna ^-^
Xem chi tiết
Trên con đường thành côn...
8 tháng 7 2023 lúc 9:43

BĐT\(\Leftrightarrow\dfrac{a}{-a+b+c}+\dfrac{b}{a-b+c}+\dfrac{c}{a+b-c}\ge3\)

Áp dụng BĐT Svac-xơ, ta có:

\(\dfrac{a^2}{-a^2+ab+ac}+\dfrac{b^2}{ab-b^2+bc}+\dfrac{c^2}{ac+bc-c^2}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

Ta có: \(a,b,c\) là 3 cạnh của 1 tam giác nên:

\(a\left(b+c\right)>a^2\). Tương tự và cộng theo vế, ta có:

\(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)>0\)

Ta sẽ chứng minh \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\ge3\left(1\right)\)

Thật vậy, \(BĐT\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)+\left(a+b+c\right)^2\ge6\left(ab+bc+ca\right)\), đúng

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Trên con đường thành côn...
8 tháng 7 2023 lúc 9:48

Cách 2:

Đặt \(\left\{{}\begin{matrix}-a+b+c=x\\a-b+c=y\\a+b-c=z\end{matrix}\right.\) với \(x,y,z>0\)

Khi đó ta có \(a=\dfrac{y+z}{2};b=\dfrac{x+z}{2};c=\dfrac{x+y}{2}\)

BĐT cần chứng minh trở thành:

\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\), đúng theo bđt Cauchy

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\Leftrightarrow a=b=c\)

hà mai trang
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
tth_new
14 tháng 3 2018 lúc 14:23

Trước khi giải mình đã chụp lại ảnh bài toán và phát hiện bạn đổi đề. Bạn không được làm như thế, bạn đã khiển các bạn khác tưởng mình sai đề đó huhu

tth_new
14 tháng 3 2018 lúc 13:49

Đặt a = b = c . Từ đề bài:

\(\Rightarrow\frac{1}{p-a}=\frac{1}{p-\left(b+c\right)}\)

\(\Rightarrow\frac{1}{p-b}=\frac{1}{p-\left(c+a\right)}\)

\(\Rightarrow\frac{1}{p-c}=\frac{1}{p-\left(a+b\right)}\)

\(\Leftrightarrow\frac{1}{p-\left(b+c\right)}+\frac{1}{p-\left(c+a\right)}+\frac{1}{p-\left(a+b\right)}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 \(\Leftrightarrow\frac{1}{p-a^2}+\frac{1}{p-b^2}+\frac{1}{p-c^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì a = b =c nên (b +c) ta đổi thành a2, các cái còn lại tương tự)

Suy ra \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Vậy đẳng thức xảy ra khi và chỉ khi a = b =c

 P/s: Mình không chắc! Sai thì thôi nha! Đừng chọn sai nhé

Dương Phúc Thắng
14 tháng 3 2018 lúc 14:10

ở đâu ra a=b=c vậy?

Ngô Tấn Đạt
Xem chi tiết
Tuyền Nguyễn Minh
Xem chi tiết
Neet
10 tháng 9 2017 lúc 16:02

set \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\)\(\Rightarrow x+y+z=3\)

\(VT=\sum\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)}{4x}}=\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}.\left(\sum\dfrac{1}{\sqrt{4x\left(y+z\right)}}\right)\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{\sqrt{4x\left(y+z\right)}}+\dfrac{1}{\sqrt{4y\left(x+z\right)}}+\dfrac{1}{\sqrt{4z\left(x+y\right)}}\ge\dfrac{9}{2\left(\sqrt{xy+xz}+\sqrt{yz+yx}+\sqrt{xz+zy}\right)}\)

Áp dụng BĐT bunyakovsky:

\(\sum\sqrt{xy+yz}\le\sqrt{6\left(xy+yz+xz\right)}\)

\(\Rightarrow\sum\dfrac{1}{2\sqrt{x\left(y+z\right)}}\ge\dfrac{9}{2\sqrt{6\left(xy+yz+xz\right)}}\)

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{3}\left(xy+yz+xz\right)\)(*)

\(\Rightarrow VT\ge\sqrt{\dfrac{8}{3}\left(xy+yz+xz\right)}.\dfrac{9}{2\sqrt{6\left(xy+yz+xz\right)}}=3\)

Dấu = xảy ra khi x=y=z hay a=b=c=1

(*) Prove BĐT \(\left(m+n\right)\left(n+p\right)\left(m+p\right)\ge\dfrac{8}{9}\left(m+n+p\right)\left(mn+np+pm\right)\)

khai triển ,để ý rằng \(\left(m+n\right)\left(n+p\right)\left(p+m\right)=\left(m+n+p\right)\left(mn+np+pm\right)-mnp\)

Nguyễn Khánh Nhi
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Nguyễn Shinn
16 tháng 7 2018 lúc 20:13

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{\left(1+1\right)^2}{2p-a-b}=\dfrac{4}{c}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{\left(1+1\right)^2}{2p-b-c}=\dfrac{4}{a}\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{\left(1+1\right)^2}{2p-a-c}=\dfrac{4}{b}\)

Cộng theo vế:

\(2VT\ge4VP\Leftrightarrow VT\ge2VP\Leftrightarrowđpcm\)

\("="\Leftrightarrow a=b=c\)