Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cụ nhất kokushibo
Xem chi tiết
Akai Haruma
11 tháng 7 2023 lúc 23:52

Bài 1:

a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.

$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$

Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$

Akai Haruma
11 tháng 7 2023 lúc 23:54

Bài 2:

a.

$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)

$\Rightarrow C\leq -6$

Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.

$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$

$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$

Dương tuyết mai
Xem chi tiết
ctk_new
31 tháng 10 2019 lúc 11:36

a) \(A=5x^2-4x+1\)

\(=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)

\(=5\left(x^2-\frac{4}{5}x+\frac{4}{25}-\frac{2}{25}\right)\)

\(=5\left[\left(x-\frac{2}{5}\right)^2-\frac{2}{25}\right]\)

\(=5\left[\left(x-\frac{2}{5}\right)^2\right]-2\ge-2\)

Vậy \(A_{min}=-2\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Khách vãng lai đã xóa
ctk_new
31 tháng 10 2019 lúc 11:40

Sửa)):Dòng 3

\(=5\left(x^2-\frac{4}{5}x+\frac{4}{25}+\frac{1}{25}\right)\)

\(=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)

\(=5\left[\left(x-\frac{2}{5}\right)^2\right]+\frac{1}{5}\ge\frac{1}{5}\)

(Dấu "="\(\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Khách vãng lai đã xóa
Thuy Tran
Xem chi tiết
Phạm Tuấn Đạt
27 tháng 7 2018 lúc 21:54

a)\(A=x^2-4x+15\)

\(A=x^2-2x-2x+4+9\)

\(A=x\left(x-2\right)-2\left(x-2\right)+9\)

\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)

Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)

Vậy Min A = 9 <=> x = 2

b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)

Dấu "=" xảy ra khi \(x=0\)

Vậy Min B = 0 <=> x = 0

c)\(C=x^2+y^2+4x+6y+20\)

\(C=x^2+4x+4+y^2+6y+9+7\)

\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra khi : x = -2 ; y = -3

Vậy Min C = 7 <=> x = -2 ; y = -3

Dương Lam Hàng
27 tháng 7 2018 lúc 21:55

\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)

Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2

\(C=x^2+y^2+4x+6y+20\)

     \(=x^2+4x+4+y^2+6y+9+7\)

      \(=\left(x+2\right)^2+\left(x+3\right)^2+7\)

Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)

Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3

Dương Lam Hàng
27 tháng 7 2018 lúc 21:57

Mình làm thiếu câu b

\(B=x.\left(x-3x\right)=x.\left(-2x\right)=-2x^2\)

Vì \(x^2\ge0\left(\forall x\right)\Rightarrow-2x^2\ge0\)

Dấu "=" xảy ra <=> x2 = 0<=> x = 0

Vậy GTNN của biểu thức bằng 0 khi và chỉ khi x = 0

Ngo Tung Lam
Xem chi tiết
๖Fly༉Donutღღ
8 tháng 9 2017 lúc 20:27

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

l҉o҉n҉g҉ d҉z҉
8 tháng 9 2017 lúc 20:18

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)

Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Ngoc Do
Xem chi tiết
Ngoc Do
15 tháng 8 2021 lúc 14:43

Giúp mình với ạ,cảm ơn mọi người

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 14:44

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

Demngayxaem
Xem chi tiết
Trà My
13 tháng 6 2017 lúc 18:03

a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=2;y=1

b) tương tự câu a

Trà My
16 tháng 6 2017 lúc 7:50

c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)

\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)

\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=2;y=1

Tuan
9 tháng 9 2018 lúc 12:56

k mk đi

ai k mk

mk k lại

thanks

Thuy Tran
Xem chi tiết
Nguyễn Tấn An
27 tháng 7 2018 lúc 21:53

A=\(x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+11\ge11\) Vậy A có GTNN=11 khi x-2=0=>x=2. B=\(x\left(x-3x\right)=x^2\left(1-3\right)=-2x^2\)\(x^2\ge0\Rightarrow-2x^2\le0\) . Vậy B không có GTNN, GTLN là 0.

Nguyễn Tấn An
27 tháng 7 2018 lúc 21:58

\(C=x^2+y^2+4x+6y+20=x^2+4x+4+y^2+6y+9+7=\left(x+2\right)^2+\left(y+3\right)^2+7\)\(\left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\) Vậy GTNN C=7 khi \(\left\{{}\begin{matrix}x+2=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Capricorn
Xem chi tiết
Hứa Thị Thu Thảo
22 tháng 6 2017 lúc 21:21

\(x^2+y^2-x+6y+15\)

=\(x^2-2.\frac{1}{2}.x+\frac{1}{4}+y^2+6y+9+\frac{23}{4}\)

=\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\)>=\(\frac{23}{4}\)

Dấu "=" xảy ra khi và chỉ khi :

\(x=\frac{1}{2}\);\(y=-3\)

Vậy GTNN của bt trên là \(\frac{23}{4}\)khi \(x=\frac{1}{2}\);\(y=-3\).