Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2020 lúc 14:12

Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)

Thu Đào
Xem chi tiết
Lê Minh Quang
7 tháng 8 2023 lúc 19:11

a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)

b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)

      Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)

c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1

+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

 ⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên

Nguyễn Đức Trí
7 tháng 8 2023 lúc 19:12

a) \(\overline{aaa}=100a+10a+a=111a\)

mà \(111=37.3⋮37\)

\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)

\(\Rightarrow dpcm\)

 

nguyen pham thu minh
Xem chi tiết

TL :

aaa = a . 111

Ta có : 

111 = 3 . 37

=> aaa = a . 111 = a . 3 . 37

=> aaa luôn chi hết cho 37

Vậy số có dạng aaa luôn chia hết cho 37

Khách vãng lai đã xóa
Truong duc thanh
Xem chi tiết
Truong duc thanh
Xem chi tiết
Cao Thị Phương Ly
Xem chi tiết
Cao Thị Phương Ly
23 tháng 8 2017 lúc 8:54

~  là trừ

Nguyễn Bạch Diệu Linh
23 tháng 8 2017 lúc 8:58

Tớ làm phần b trước nha ! 

         Ta có : abcabc = abc000 + abc

                                  = abc x 1000 + abc

                                   = abc x ( 1000 + 1 )

                                   = abc x 1001

                                   = abc x 7 x 11 x 13 

Vậy abcabc chia hết cho 7 ; 11 và 13

Bexiu
23 tháng 8 2017 lúc 11:20

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Lê phan joly
Xem chi tiết
If we try we will succee...
15 tháng 7 2017 lúc 20:41

abc abc=abc.1000+abc=abc.(1000+1) 

=abc.1001=abc.91.11 

vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11 

 Phạm Trà Giang
15 tháng 7 2017 lúc 20:49

abc x abc = abc x 1000 + abc = abc x ( 1000 + 1 )

= abc x 1001 = abc 91 11

Vì 11 chia hết cho 11 nên abc x 91 x 11 chia hết cho 11.

nguyễn đức vượng 2
15 tháng 7 2017 lúc 20:50

abc abc = abc x 1000 + abc = abc x ( 1000 + 1 )

= abc x 1001 = abc x 91 x 11

vì 11 chia hết cho 11 => abc x 91 x 11 chia hết cho 11

       Đáp số :..........

nguyen vu thanh lan
Xem chi tiết
nguyen vu thanh lan
30 tháng 7 2016 lúc 8:28

Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )

Nên: a=9 k1+ r

        b=9 k2+r

Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)

                       = 9 k1+r - 9 k2-r

                       = 9 k1 - 9 k2 + r-r

                       = 9.k1-9.k2

                       = 9. (k1+k2) chia hết cho 9

                       Hay (a-b) chia hết cho 9

Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9

Nhớ k đúng cho mình nha!

Nguyen Thuy Vy
Xem chi tiết
Trần Hải An
18 tháng 7 2016 lúc 10:19

a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Nếu m chia hết cho 2 thì ta có điều cần chứng minh

Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2

b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3

=> ĐPCM