Chứng tỏ rằng số có dạng abcabc lúc nào cũng chia hết cho 11, chia hết cho 91.
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)
AI BIẾT LÀM BÀI NÀY CHỈ EM VỚI Ạ!! EM CẢM ƠN ❤
Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng ab - ba ( a lớn hơn hoặc bằng b ) bao giờ cũng chia hết cho 9.
c) Với mọi số tự nhiên n thì tích ( n + 3 )( n + 6 ) luôn chia hết cho 2.
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
TL :
aaa = a . 111
Ta có :
111 = 3 . 37
=> aaa = a . 111 = a . 3 . 37
=> aaa luôn chi hết cho 37
Vậy số có dạng aaa luôn chia hết cho 37
Chứng tỏ rằng có số dạng 19781978...1978000...000 chia hết cho 2017
chứng tỏ rằng có số toàn gồm số 2 chia hết cho 31
A, cho a và b chia 3 có cùng số dư, chứng tỏ : a~b chia hết cho 3
B, chứng minh : T = abcabc chia hết cho 7 ;11;13
Tớ làm phần b trước nha !
Ta có : abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1 )
= abc x 1001
= abc x 7 x 11 x 13
Vậy abcabc chia hết cho 7 ; 11 và 13
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 ( chẳng hạn: 328 328 chia hết cho 11).
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
abc x abc = abc x 1000 + abc = abc x ( 1000 + 1 )
= abc x 1001 = abc 91 11
Vì 11 chia hết cho 11 nên abc x 91 x 11 chia hết cho 11.
abc abc = abc x 1000 + abc = abc x ( 1000 + 1 )
= abc x 1001 = abc x 91 x 11
vì 11 chia hết cho 11 => abc x 91 x 11 chia hết cho 11
Đáp số :..........
Chứng tỏ rằng hai số chia cho 9 có cùng số dư thì hiệu hai số đó chia hết cho 9
Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )
Nên: a=9 k1+ r
b=9 k2+r
Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)
= 9 k1+r - 9 k2-r
= 9 k1 - 9 k2 + r-r
= 9.k1-9.k2
= 9. (k1+k2) chia hết cho 9
Hay (a-b) chia hết cho 9
Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9
Nhớ k đúng cho mình nha!
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM