Tính:
\(\dfrac{1^2}{1.2}\).\(\dfrac{2^2}{2.3}\).\(\dfrac{3^2}{3.4}\)...\(\dfrac{10^2}{10.11}\)
Tính: a) A=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+...+\(\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{2023.2024}\)
cứu tôi mng owiiii :((
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)
\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)
\(A=1-\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}\)
\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)
\(=\dfrac{2023}{2024}\)
1) Tính
\(\dfrac{7^4.3-7^3}{7^4.6-7^3.2}\) ; \(\dfrac{10^3+5.10^2+5}{6^3+3.6^2+3^2}\) ; \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
2) Tìm x biết
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\) ; \(3^{x+1}+3^{x+3}=810\)
MN ƠI ! GIÚP MIK VS > . <
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
\(\dfrac{x}{200}\)= \(\dfrac{1^2}{1.2}\) . \(\dfrac{2^2}{2.3}\) . \(\dfrac{3^2}{3.4}\) . .... .\(\dfrac{99^2}{99.100}\)
bạn hãy rút gọn vế phải: x/200=1/2.2/3.3/4......98/99.99/100
Rồi sẽ có cái phương trình:x/200=1/100
từ đó suy ra:x/200=2/200 =>x=2
:)))))
\(\dfrac{x}{200}=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{100}\)
\(\Leftrightarrow x=2\)
Chứng tỏ rằng:
a, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}< 1\)
b, \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\).
b. Có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\).
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)
P = \(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =2\cdot\dfrac{99}{100}\\ =\dfrac{99}{50}\)
\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\left(1-\dfrac{1}{100}\right)=2\cdot\dfrac{99}{100}=\dfrac{99}{50}\)
\(P=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(1-\dfrac{1}{100}\right)\)
\(=2\cdot\dfrac{99}{100}\)
\(=\dfrac{99}{50}\)
#DatNe
\(\dfrac{1}{1.2}+\dfrac{2}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.(x+1)}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)
=>x+1=2022
hay x=2021
So sánh N = \(\dfrac{2}{1.2}\)+\(\dfrac{2}{2.3}\)+\(\dfrac{2}{3.4}\)+...+\(\dfrac{2}{49.50}\) với 2
\(\dfrac{N}{2}=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}< 1\\ N< 2\)
Ta có: \(N=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{49\cdot50}\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\right)\)
\(=2\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=2\left(1-\dfrac{1}{50}\right)\)
\(=2\cdot\dfrac{49}{50}=\dfrac{49}{25}< \dfrac{50}{25}=2\)
Vậy: N<2
Ta có: =2(11⋅2+12⋅3+13⋅4+...+149⋅50)=2(11⋅2+12⋅3+13⋅4+...+149⋅50)
=2(1−150)=2(1−150)
1.Tính
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
B=\(\dfrac{3}{5.6}+\dfrac{3}{6.7}+\dfrac{3}{7.8}+.....+\dfrac{3}{101.102}\)
C=\(\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{5.6.7}\)
D=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
TÍnh A=\(\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
B=\(\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+...+\dfrac{5}{98.99.100.101}\)
C=\(\dfrac{6}{1^2+2^2}+\dfrac{10}{2^2+3^2}+\dfrac{14}{3^2+4^2}+...+\dfrac{398}{99^2.100^2}\)
\(A=\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
\(A=\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100.101}\right)\)
\(A=\left(1-\dfrac{1}{100}\right)-\left(\dfrac{\dfrac{1}{1.2}-\dfrac{1}{100.101}}{2}\right)\)
Bấm máy nha
\(B=\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+\dfrac{5}{3.4.5.6}+...+\dfrac{5}{98.99.100.101}\)
\(B=\dfrac{5}{3}.\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+...+\dfrac{3}{98.99.100.101}\right)\)
\(B=\dfrac{5}{3}.\left(\dfrac{4-1}{1.2.3.4}+\dfrac{5-2}{2.3.4.5}+...+\dfrac{101-98}{98.99.100.101}\right)\)
\(B=\dfrac{5}{3}.\left(\dfrac{4}{1.2.3.4}-\dfrac{1}{1.2.3.4}+\dfrac{5}{2.3.4.5}-\dfrac{2}{2.3.4.5}+...+\dfrac{101}{98.99.100.101}-\dfrac{98}{98.99.100.101}\right)\)
\(B=\dfrac{5}{3}.\left(\dfrac{1}{1.2.3}-\dfrac{1}{99.100.101}\right)\)
\(B=\dfrac{5}{3}.\dfrac{166649}{999900}\approx0,3\)