chưng minh đa thức sau vô nghiêm f(x)=-x^2-5x-10
Chứng tỏ đa thức sau vô nghiêm
\(f\left(x\right)=x^2-6x+10\)
f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x
=>F(x) vô nghiệm
\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Cho hai đa thức f(x)=4x-x+2 và g(x)=x +5x-1
a)Tìm đa thức h(x)=f(x)-g(x)
b) xác định bậc của đa thức h(x)
c)Giá trị x=-1 có là nghiêm của da thức h(x) không?
a: h(x)=4x^2-x+2-x^2-5x+1=3x^2-6x+3
b: bậc là 2
c: h(-1)=3+6+3=12
=>x=-1 ko là nghiệm của h(x)
Chứng minh rằng đa thức sau vô nghiệm:
f(x)=x2(x2+1)+x2(x+3)+3x+3
g(x)=x2(x2-x+1)+5x2-5x+5
Chứng minh đa thức sau vô nghiệm: x^2-5x+30
\(x^2-5x+30=x^2-2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+30=\left(x-\dfrac{5}{2}\right)^2+\dfrac{95}{4}\ge\dfrac{95}{4}>0\) => Đa thức vô nghiệm \(\forall x\)
Cho hai đa thức: f(x)= 5x^4+x^3-x+11+x^4-5x^3
g(x)2x^2+3x^4+9-4x^2-4x^3+2x^4-x
a) Thu gon và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính h(x)=f(x)-g(x)
c) Chứng tỏ rằng đa thức h(x) không có nghiêm
a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)
\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)
\(=6x^4-4x^3-x+11\)
Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)
\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)
\(=5x^4-4x^3-2x^2-x+9\)
b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)
\(=x^4+2x^2+2\)
c) Ta có: \(x^4\ge0\forall x\)
\(2x^2\ge0\forall x\)
Do đó: \(x^4+2x^2\ge0\forall x\)
\(\Leftrightarrow x^4+2x^2+2\ge2>0\forall x\)
Vậy: Đa thức h(x) không có nghiệm(Đpcm)
Cho các đa thức:
F(x)=4x4-2+2x3+2x4-5x+4x3-9
G(x)=6x4+6x3-x2-5x-27
a) Thu gọn và sắp xếp các hạng tử F(x) theo lũy thừa giảm của biến
b) Tính K(x)=F(x) + G(x)
c) Gọi H(x)=F(x) - G(x). Chứng minh đa thức H(x) vô nghiệm
`a,`
`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`
`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`
`F(x)=6x^4+6x^3-5x-11`
`b,`
`K(x)=F(x)+G(x)`
`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`
`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`
`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`
`K(x)=12x^4+12x^3-x^2-10x-38`
`c,`
`H(x)=F(x)-G(x)`
`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`
`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`
`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`
`H(x)=x^2+16`
Đặt `x^2+16=0`
Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)
`->` Đa thức `H(x)` vô nghiệm.
chứng minh đa thức sau vô nghiêm
2x^2+12x+19
Lời giải:
$2x^2+12x+19=2(x^2+6x+9)+1$
$=2(x+3)^2+1\geq 2.0+1=1>0$ với mọi $x\in\mathbb{R}$
Tức là $2x^2+12x+19\neq 0$ với mọi $x\in\mathbb{R}$
Vậy đa thức đó vô nghiệm.
`2x^2+12x+19`
`=2(x^2+6x+19/2)`
`=2(x^2+2.x.3+9+1/2)`
`=2(x^2+2.x.3+3^2)+2.1 /2`
`=2(x+3)^2+1`
Ta thấy : `2(x+3)^2>=0`
`=>2(x+3)^2+1>=1>0`
Vậy đa thức đã cho vô nghiệm
Ta có: \(2x^2+12x+19\)
\(=2\left(x^2+6x+\dfrac{19}{2}\right)\)
\(=2\left(x^2+6x+9+\dfrac{1}{2}\right)\)
\(=2\left(x+3\right)^2+1>0\forall x\)
Chứng minh rằng đa thức sau vô nghiệm f(x) = x^2 - x - x + 2
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
Chứng minh đa thức f(x)=x^2+x+1 ko có nghiêm !!!
Ta có f(x) = x2 + x + 1 = \(\left(x^2+\frac{1}{2}x\right)+\left(\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\text{vì }\left(x+\frac{1}{2}\right)^2\ge0\forall x\right)\)
=> f(x) vô nghiệm