Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Nguyễn
Xem chi tiết
Lim Nayeon
7 tháng 7 2018 lúc 15:56

a=2+2^2+2^3+...+2^10

a=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)

a=2.(1+2)+2^3.(1+2)+...+2^9.(1+2)

a=3.(2+2^3+...+2^9)

=> a chia hết cho 3

a=2+2^2+2^3+...+2^10

a=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)

a=2.(1+2+4+8+16)+2^6.(1+2+4+8+16)

a=31.(2+2^6)

=> a chia hết cho 31

chúc bạn học tốt nha

Minh Nguyễn
8 tháng 7 2018 lúc 8:58

Cảm ơn bạn nhiều nha

Đặng Yến Nhi
18 tháng 10 2022 lúc 21:24

^ nghĩa là gì

Như Bảo
Xem chi tiết
Akai Haruma
8 tháng 7 2018 lúc 11:18

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

Akai Haruma
8 tháng 7 2018 lúc 11:23

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

Akai Haruma
8 tháng 7 2018 lúc 11:29

Bài 3:

a,b) \(Q=3+3^2+3^3+...+3^{12}\)

\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)

\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)

Do đó \(Q\vdots 10; Q\vdots 4\)

c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)

\(=13(3+3^4+...+3^{10})\vdots 13\)

Ta có đpcm.

b)

Mèo Con
Xem chi tiết
phạm thị vân anh
Xem chi tiết

Có: a+b chia hết cho 2

=> a và b chia hết cho 2

=> a và b là số chẵn

Vì tất cả các số chẵn nhân với bất kì số nào thì nó vẫn là số chẵn.

=> a+3b chia hết cho 2

Khách vãng lai đã xóa
phạm thị vân anh
16 tháng 11 2019 lúc 21:33

mơn bn ly nhìu nha!

Khách vãng lai đã xóa

không có gì đâu cậu ^^

Khách vãng lai đã xóa
Nguyễn Ngọc Linh
Xem chi tiết
Lina Ngô
12 tháng 10 2014 lúc 10:19

Giải:

(a+b) chia hết cho 2

=> a và b chia hết cho 2

=> a và b là số chẵn

Vì tất cả các số chẵn nhân với bất kì số nào thì nó vẫn là số chẵn

=> (a+3b) chia hết cho2

 

Nguyễn Ngọc Linh
12 tháng 10 2014 lúc 11:39

ồ thế cảm ơn bạn nhiều nha.

đỗ ngọc ánh
24 tháng 7 2017 lúc 10:27

a+b chia hết cho 2 

chưa chắc a chia hết cho 2 và b chia hết cho 2

vd 1+3 chia hết cho 2 nhưng 1 và 3 không chia hết cho 2

chuột chít
Xem chi tiết
Nguyễn Ngọc Quý
13 tháng 8 2015 lúc 10:29

a) A = \(\left(2+2^2+2^3+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)\)

\(=\left(2.31\right)+2^5.31=31.\left(2+2^5\right)\)

Vậy A chia hết cho 31

nguyễn thanh mai
Xem chi tiết
Edogawa Conan
17 tháng 3 2017 lúc 19:11

chắc bạn chép sai đầu bài ý a rồi , mình sửa lại nhé

Đặt A=\(2+2^2+2^3+...+2^{100}\)

Tổng A có :(100-1):1+1=100(số hạng)

=>A=\(2+2^2+2^3+...+2^{100}\)

A=\(\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

(có \(\dfrac{100}{5}=20\) nhóm , mỗi nhóm có 5 số hạng)

A=\(2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

A=\(2.31+2^6.31+...+2^{96}.31\)

A=\(31.\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Phương Trâm
18 tháng 3 2017 lúc 10:28

Sửa đề câu a tí nhé:

Chứng tỏ \(\left(2+2^2+2^3+...+2^{100}\right)\)chia hết cho 31

Giải:

Đặt \(S=\left(2+2^2+2^3+...+2^{100}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right).2^{96}\)

\(=2.31+2^6.31+...+2^{96}.31\)

\(=31.\left(2+2^6+...+2^{96}\right)\)

\(\Rightarrow S⋮31\)

Phương Trâm
18 tháng 3 2017 lúc 10:32

b.

Đặt \(A=\left(1+3+3^2+3^3+...+3^{11}\right)\)

\(A=\left(1+3+3^2+3^3+...+3^8.\left(1+3+3^2+3^3\right)\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)⋮40\)

Vậy \(A\) chia hết cho \(40\)

Yến Nhi
Xem chi tiết
không nói hahahahahha
16 tháng 7 2016 lúc 11:02

không trả lời

Han Han
Xem chi tiết
Akai Haruma
10 tháng 12 2023 lúc 16:12

Câu 1:

$A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^{2016}+5^{2017}+5^{2018})$

$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{2016}(1+5+5^2)$

$=(1+5+5^2)(1+5^3+...+5^{2016})$

$=31(1+5^3+...+5^{2016})\vdots 31$ (đpcm)

Akai Haruma
10 tháng 12 2023 lúc 16:13

Câu 2:

$2x+7\vdots 2x-2$
$\Rightarrow (2x-2)+9\vdots 2x-2$

$\Rightarrow 9\vdots 2x-2$

$\Rightarrow 2x-2$ là ước của $9$

Mà $2x-2$ là số chẵn với mọi $x$ nguyên, còn $Ư(9)\in \left\{\pm 1; \pm 3; \pm 9\right\}$ (không có ước nào chẵn) 

$\Rightarrow$ không tồn tại $x$ nguyên thỏa mãn yêu cầu đề bài.

Han Han
10 tháng 12 2023 lúc 18:41

± dấu này là dấu gì