Chứng minh f'(x)>0 với mọi x\(\in\)R biết f(x)=\(\dfrac{2}{3}x^9-x^6+2x^3-3x^2+6x-1\)
Chứng minh rằng :
\(f'\left(x\right)>0,\forall x\in R\) nếu
a) \(f\left(x\right)=\dfrac{2}{3}x^9-x^6+2x^3-3x^2+6x-1\)
b) \(f\left(x\right)=2x+\sin x\)
Lời giải (Giao lưu_cách làm cấp 2)
\(f'\left(x\right)=6x^8-6x^5+6x^2-6x+6=6\left(x^8-x^5+x^2-x+1\right)=6A\)
Cần c/m : \(A>\left(x^8-x^5+x^2-x+1\right)...với\forall x\in R\)
Nếu \(\left|x\right|\ge1\Rightarrow\left\{{}\begin{matrix}x^8\ge x^5\\x^2\ge x\end{matrix}\right.\) \(\Rightarrow A=\left(x^8-x^5\right)+\left(x^2-x\right)+1>0\Rightarrow A>0\)(1)
Nếu \(\left|x\right|< 1\Rightarrow\left\{{}\begin{matrix}x^2>x^5\\1>x\end{matrix}\right.\)\(\Rightarrow A=\left(x^2-x^5\right)+\left(1-x\right)+x^8>0\Rightarrow A>0\)(2)
Từ (1) và (2) \(\Rightarrow A>0\forall x\in R\)=> dpcm
Chứng minh rằng \(f'\left(x\right)=0;\forall x\in R\) nếu :
a) \(f\left(x\right)=3\left(\sin^4x+\cos^4x\right)-2\left(\sin^6x+\cos^6x\right)\)
b) \(f\left(x\right)=\cos^6x+2\sin^4x.\cos^2x+3\sin^2x\cos^4x+\sin^4x\)
c) \(f\left(x\right)=\cos\left(x-\dfrac{\pi}{3}\right)\cos\left(x+\dfrac{\pi}{4}\right)+\cos\left(x+\dfrac{\pi}{6}\right)\cos\left(x+\dfrac{3\pi}{4}\right)\)
d) \(f\left(x\right)=\cos^2x+\cos^2\left(\dfrac{2\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3}-x\right)\)
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
1.chứng minh \(\dfrac{6x^3-x^6}{x^4-2x^2+4}< 3\) với mọi x ∈ R
2.chứng minh \(\dfrac{x^4-4x^2+8}{2x-x^2}>4\) với mọi x ∈ (0;2)
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Tớ nêu hướng giải bài 3 thôi nhé:
Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1
Lời giải:
Thật vậy,thay x = 1 vào:
\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)
Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)
mọi người có thể giúp mk giải những bài toán này được ko? (chứng minh sao cho BT không phụ thuộc vào biến X)
1/ A=( 3x-5 ).(2x+1)-(2x-3).(3x+7)
2/ B=(2x+3).(4x^2-6x+9)-2.(4x^3-1)
3/ C=(x-1)^3-(x+1)^3+6.(x+1).(x-1)
4/ D=(2x+5)^3-30x.(2x+5)-8x^3
5/ E=(3x+1)^2+12x-(3x+5)^2+2.(6x+3)
6/ F=(x-5).(2x+3)-2x.(x-3)+x+7
Nếu mọi người có thể xin hãy giúp mk, mk xin cảm ơn rất nhiều ạ!!!
Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .
1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)
\(=>A=-12x+16\)
2) \(=>B=8x^3+27-8x^3+2=29\)
3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)
4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)
5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)
\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)
\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)
6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)
k cho mik nha ,
1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)
2. C/m biểu thức sau không phụ thuộc vào biến x,y
a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)
b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)
3. Phân tích đa thức thành nhân tử:
a) 81x4 + 4
b) x2 + 8x + 15
c) x2 - x - 12
4. Tìm x biết:
a) 2x (x-5) - x(3+2x) = 26
b) 5x (x-1) = x -1
c) 2(x+5) - x2 - 5x = 0
d) (2x-3)2 - (x+5)2 = 0
e) 3x3 - 48x = 0
f) x3 + x2 -4x = 4
g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0
5. C/m rằng biểu thức
A = -x(x-6) - 10 luôn luôn âm với mọi x
B = 12x - 4x2 - 14 luôn luôn âm với mọi x
C = 9x2 -12x + 11 luôn luôn dương với mọi x
D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.
6. Cho các phân thức sau
\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)
\(B=\dfrac{x^2-9}{x^2-6x+9}\)
\(C=\dfrac{9x^2-16}{3x^2-4x}\)
\(D=\dfrac{x^2+4x+4}{2x+4}\)
\(E=\dfrac{2x-x^2}{x^2-4}\)
\(F=\dfrac{3x^2+6x+12}{x^3-8}\)
a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định
b) Tìm x để giá trị của các phân thức trên bằng 0
c) Rút gọn các phân thức trên.
7. Thực hiện các phép tính sau:
a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)
b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)
d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)
e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)
g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)
8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )
a) Rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
Câu 4:
a) 2x(x - 5) - x(3 + 2x) = 26
⇔ 2x2 - 10x - 3x - 2x2 = 26
⇔ - 13x = 26
⇔ x = -2
b) 5x(x - 1) = x - 1
⇔ 5x = 1
⇔ x = \(\dfrac{1}{5}\)
c) 2(x + 5) - x2 - 5x = 0
⇔ 2( x + 5) - x(x + 5) = 0
⇔ (x + 5)(2 - x) = 0
⇔ x + 5 = 0 hoặc 2 - x = 0
⇔ x = -5 hoặc x = 2
d) (2x - 3)2 - (x + 5)2 = 0
⇔ (2x - 3 - x - 5)(2x - 3 + x + 5) = 0
⇔ (x - 8)(3x + 2) = 0
⇔ x - 8 = 0 hoặc 3x + 2 = 0
⇔ x = 8 hoặc x = \(\dfrac{-2}{3}\)
e) 3x3 - 48x = 0
⇔ 3x(x2 - 16) = 0
⇔ 3x = 0 hoặc x2 - 16 = 0
⇔ x = 0 hoặc x = 4 hoặc x = -4
BÀI 6 :rút gọn phân thức
\(\dfrac{x^3+3x^3+3x+1}{x^2+x}\)
b)\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
c)\(\dfrac{x^2+4x+4}{2x+4}\)
d)\(\dfrac{(x-1)(-x-2)}{x+2}\)
e)\(\dfrac{x^2-y^2}{x+y}\)
f)\(\dfrac{3x^2+4xy^2}{6x+8y}\)
g)\(\dfrac{-3x^2-6x}{4-x^2}\)
BÀI 7 :quy đồng mẫu thức các phân thức
\(\dfrac{2}{5x^3y^2}và \dfrac{3}{4xy}\)
b)\(\dfrac{x}{x^2-2xy+y^2} và \dfrac{x}{x^2-xy}\)
c)\(\dfrac{1}{x+2};\dfrac{2}{2x+4}và \dfrac{3}{3x+6}\)
d)\(\dfrac{1}{x+3};\dfrac{2}{2x-6}và \dfrac{3}{3x-9}\)
6:
a: ĐKXĐ: x<>0
\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)
\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)
b: ĐKXĐ: x<>1
\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)
c: ĐKXĐ: x<>-2
\(\dfrac{x^2+4x+4}{2x+4}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
d: ĐKXĐ: x<>-2
\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)
\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)
e: ĐKXĐ: x<>-y
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)
7:
a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)
\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)
b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)
\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)
c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)
d:
\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)
\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
bài tập
Cho phân thức
E=\(\dfrac{x^2+6x+9}{X^3+3x^2-27x+27}.\left[\dfrac{x^2-9}{x^2+6x+9}+\dfrac{2}{3x}:\left(\dfrac{1}{x}+\dfrac{1}{3}\right)^2\right]\)
F=\(\dfrac{3+x}{3-x}.\dfrac{x^2-6x+9}{9x^2}\left(\dfrac{3}{3-x}-\dfrac{9}{27+x^3}.\dfrac{x^2-3x+9}{3-x}\right)\)
b)tìm x để |\(\dfrac{E}{F}\)|=9
tìm x để \(\dfrac{E}{F}\)=2018
d) tìm x thuộc Z để \(\dfrac{E}{F}\) thuộc Z
e) Tính gtri để \(\dfrac{E}{F}\) khi |x-1|=2018
jup mk vsssssssssssssssssssssssssss
a) rút gọn E và F