Tìm số nguyên x thoả mãn 8,3<x<9,1
Tìm cặp số nguyên thoả mãn (x;y) thoả mãn xy-(x+2y)=3
\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:
\(y-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(2\) | \(6\) | \(0\) | \(-4\) |
\(x\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)
=>xy-x-2y=3
=>x(y-1)-2y+2=5
=>(x-2)(y-1)=5
=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)
tìm x nguyên :9x+5 là tích của 2 số nguyên liên tiếp
tìm x,y nguyên thoả mãn :xy+3x-y=6
tìm x,y nguyên thoả mãn :x2−22=1x2−2y2=1
tìm x,y nguyên thoả mãn :xy+3x-y=6
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |
tìm x,y nguyên thoả mãn :\(x^2+y^2=1999\)
tìm các số nguyên x,y thỏa mãn \(9x^2+2=y^2+y\)
tìm x nguyên thoả mãn :\(2^x+3^x=5^x\)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
Câu còn lại thì chia cả 2 vế cho \(5^x\)rồi làm tiếp
Tìm số nguyên x,thoả mãn:(x+2)=(x-1)
Tìm cặp số nguyên xy thoả mãn :
x + xy = 6
Tìm tổng tất cả các số nguyên x thoả mãn: -6 < x < 5
Các số nguyên x thoả mãn -6 < x < 5 là: -5;-4;-3;-2;-1;0;1;2;3;4
Ta có: (-5) + (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 +4
= (-5) + [(-4) + 4)] + [(-3) + 3)] + [(-2) + 2] + [(-1) + 1] + 0
= (-5) + 0 + 0+ 0 + 0 + 0 = -5
Tìm tổng tất cả các số nguyên x thoả mãn: -9 < x < 9
Các số nguyên x thoả mãn -9 < x < 9 là: -8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8
Ta có: (-8) + (-7) + (-6) + (-5) + (-4) + (-3) + (-2) + (-1) + 0 +1 + 2 + 3 + 4 + 5 + 6 + 7+ 8
= [(-8) + 8] + [(-7) + 7] + [(-6) + 6] + [(-5) + 5] + [(-4) + 4] + [(-3) +3] + [(-2) + 2] +[(-1) + 1] + 0
= 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0
Bài 3. Tìm tổng các số nguyên x thoả mãn: -10 < x < 17
\(\Rightarrow x\in\left\{-9;-8;...;16\right\}\)
Tổng là: \(\dfrac{\left(16-9\right)\left(\dfrac{16+9}{1}+1\right)}{2}=91\)