Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
boy not girl
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2021 lúc 21:45

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

HELLO^^^$$$
27 tháng 3 2021 lúc 7:44

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

sad boy haizzz
6 tháng 2 2023 lúc 20:52

Ta có: =4+6−3n−1=4+6−3�−1

Ngô Minh Đức
Xem chi tiết
Trần Tuấn Hoàng
30 tháng 1 2022 lúc 20:55

=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)

=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)

=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.

Nguyễn Ngọc Tường Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 9:41

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)

=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101

=>1-1/(n+1)=100/101

=>1/(n+1)=1/101

=>n+1=101

=>n=100

ngân
Xem chi tiết
Akai Haruma
27 tháng 10 2023 lúc 12:55

Lời giải:

$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$

$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$

Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$

Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$

Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$

-------------------------

$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$

$<1-\frac{n+3}=\frac{n}{n+3}$

Nguyễn Đỗ Hà My
Xem chi tiết
Lý Minh tiến Lý
Xem chi tiết
Nguyễn Ngọc Khánh Huyền
17 tháng 11 2021 lúc 21:24

3 ?

hưng phúc
17 tháng 11 2021 lúc 21:24

\(\dfrac{13}{4}>x>\dfrac{5}{2}\)

\(\Leftrightarrow\dfrac{13}{4}>x>\dfrac{10}{4}\)

\(\Leftrightarrow x\in\left\{\dfrac{11}{4};\dfrac{12}{4}\right\}\)

Mai Thùy Dung
Xem chi tiết
Minh Hiếu
14 tháng 9 2021 lúc 20:21

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

Minh Hiếu
14 tháng 9 2021 lúc 20:18

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

....
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 19:59

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

Nguyễn Thị Kim Uyên
Xem chi tiết
Không Tên
18 tháng 3 2017 lúc 20:32

\(\dfrac{1}{3}< \dfrac{n}{20}< \dfrac{4}{5}\Leftrightarrow\dfrac{20}{60}< \dfrac{3n}{60}< \dfrac{48}{60}\)

\(\Rightarrow20< 3n< 48\)

\(\Rightarrow n=7;8;9;10;11;12;13;14;15\)

vậy n={7;8;9;10;11;12;13;14;15}