Tìm số dư trong phép chia :
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+1999\) : ( \(x^2+8x+12\))
Tìm số dư trong phép chia :
\(\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+1999\div x^2+8x+12\)
Tìm dư trg phép chia:
\(a,f\left(x\right)=1+x+x^{99}+x^{199}+x^{2019}\)cho \(1-x^2\)
b,\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2019\)cho \(x^2+8x+12\)
a,Gọi Đa thức dư là ax+b,thương là Q(x)
Ta có:f(x)=1+x+x19+x199+x2019
=(1-x2)Q(x)+Q(x)+b
=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b (1)
Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:
1+1+119+1199+12019=a+b
<=>a+b=5(*)
Với x=1 ta có:
1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b
<=>-a+b=-3(**)
Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1
Thay b=1 vào (*) ta đc:a=4
Vậy đa thức dư là 4x+1
b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019
=(x+1)(x+7)(x+5)(x+3)+2019
=(x2+8x+7)(x2+8x+15)+2019
=(x2+8x+12-5)(x2+8x+12+3)+2019
=(x2+8x+12)2-2(x2+8x+12)-15+2019
=(x2+8x+12)2-2(x2+8x+12)+2004
Tìm số dư trong phép chia \(\left(x^{1999}+x^{999}+x^{99}+x^9+2004\right):\left(x^2-1\right)\)
Phạm Minh Đức đúng ròi đó :)
f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x2 - 1 )
f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x - 1 ) ( x + 1 )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 11999 + 1999 + 199 + 19 + 2004 = 2008
+) f(-1) = (-1)1999 + (-1)999 + (-1)99 + (-1)9 + 2004 = 2000
Vậy phép chia trên có 2 đa thức dư là f(1) = 2008 và f(-1) = 2000
Biết f(x) chia cho x-2 dư 7, chia cho \(\left(x^2+1\right)\) dư 3x+5. Tìm dư trong phép chia f(x) cho \(\left(x-2\right)\left(x^2+1\right)\)
1) biết đa thức f(x) : x - 2 dư 2005
f(x) : x - 3 dư 2006
hỏi f(x) chia cho \(x^2-5x+6\) dư bao nhiêu ?
2) tìm số dư phép chia
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2006\) cho \(x^2+8x+11\) với x thuộc Z
1) Ta có f(x) = (x - 2)g(x) + 2005
f(x) = (x - 3)h(x) + 2006
Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.
Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b
Ta có: f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005
f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006
Từ đó ta tìm được a = 1; b = 2003
Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.
Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^
Tìm số dư của phép chia đa thức:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2015\) cho đa thức \(x^2+8x+10\)
Thực hiện phép tính:
a) \(2x.\left(2x^2+3x-1\right)\)
b) \(\left(x+5\right).\left(2x-3\right)\)
c) \(\left(x+1\right)^2-x\left(2+3x\right)\)
d) \(\left(2x^3+x^2-8x+3\right):\left(2x-3\right)\)
b: \(=2x^2-3x+10x-15=2x^2+7x-15\)
Ai làm được có giải nha
Đề thi hsg '' chỗ mình '' nhé
Không thực hiện phép chia đa thức, hãy tìm số dư của phép chia
\(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)
Tú mà không làm được câu này á :))
( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8
= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8
= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)
Đặt t = x2 - 15x + 54
(*) <=> t( t + 2 ) - 8
= t2 + 2t - 8
= ( t - 2 )( t + 4 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 )
=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )
Đặt y = x2 - 15x + 100
Ta có được phép chia ( y - 48 )( y - 42 ) : y
= y2 - 90y + 2016 : y
= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )
Đến đây thì quá dễ rồi :)) dư 2016 nhá
Đề này học kì 1 huyện tớ có.
\(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)
Ta có:
\(\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\)
\(=\left(x-6\right)\left(x-9\right)\left(x-7\right)\left(x-8\right)-8\)
\(=\left(x^2-15x+54\right)\left(x^2-15x+56\right)-8\)
Đặt \(x^2-15x+55=a\), lúc đó:
\(\left(a-1\right)\left(a+1\right)-8\)
\(=a^2-9=\left(a-3\right)\left(a+3\right)\)
\(=\left(x^2-15x+52\right)\left(x^2-15x+58\right)\)
Lại có:
\(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)
\(=\left(x^2-15x+52\right)\left(x^2-15x+58\right):\left(x^2-15x+100\right)\)
Đặt \(x^2-15x+100=b\), lúc đó:
\(\left(b-48\right)\left(b-42\right):b\)
\(=(b^2-90b+2016):b\)
\(=\left[b\left(b-90\right)+2016\right]:b\)
Do đó phép chia \(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)dư 2016.
Vậy...
Cho đa thức \(f\left(x\right)=6x^3-7x^2-16x+m\cdot f\left(x\right)\) chia hết cho \(2x-5\). Tìm \(m\) và số dư phép chia \(f\left(x\right)\) cho \(3x-2\).
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2\):
\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)
Do chia hết , theo định lý Bezout:
Khi đó
Số dư phép chia cho :
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)⋮2x-5\) , theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6\left(\dfrac{5}{2}\right)^3-7\left(\dfrac{5}{2}\right)^2-16\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2:\)
\(f\left(\dfrac{2}{3}\right)=6\left(\dfrac{2}{3}\right)^3-7\left(\dfrac{2}{3}\right)^2-16\left(\dfrac{2}{3}\right)-10=-22\)