lim(n - 3 - căn(n2 - căn(5)n +1) = căn(5)a + b.
Tính a + b
tính các giới hạn sau
a) lim (3n^2+n^2-1) b)lim n^3+3n+1/2n-n^3
c) lim -2n^3+3n+1/n-n^2 d) lim(n+ căn n^2-2n
e) lim (2n-3*2n+1) f) (căn 4n^2-n -2n) g) lim (căn n^2+3n-1 - 3^căn n^3-n)
Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm
TÍNH CÁC GIỚI HẠN SAU:
a) lim n^3 +2n^2 -n +1
b) lim n^3 -2n^5 -3n-9
c)lim n^3 -2n/ 3n^2+n-2
d) lim 3n-2n^4/ 5n^2 -n +12
e) lim ( căn(2n^2 +3) - căn n^2 +1
f) lim căn( 4n^2 -3n) -2n
Tính các giới hạn sau:
a) lim n^3 +2n^2 -n+1
b) lim n^3 -2n^5 -3n-9
c) lim n^3 -2n/ 3n^2 +n-2
d) lim 3n -2n^4/ 5n^2 -n+12
e) lim (căn 2n^2 +3 - căn n^2 +1)
f) lim căn (4n^2-3n). -2n
Giúp mình đc ko mình cần gấp ngày mai nộp rồi T^T thank
Lim căn 9n^+2n+n-2/căn 4n^+1
Lim n/căn 4n^+2+căn n^
Lim căn 4n+2- căn 2n-5/căn n+3
Lim căn 4n^+n+1-n/n^+2
Lim căn 9n^+n+1-2n/3n^+2
\(lim\frac{\sqrt{9n^2+2n}+n-2}{\sqrt{4n^2+1}}=lim\frac{\sqrt{9+\frac{2}{n}}+1-\frac{2}{n}}{\sqrt{4+\frac{1}{n^2}}}=\frac{\sqrt{9}+1}{\sqrt{4}}=2\)
\(lim\frac{n}{\sqrt{4n^2+2}+\sqrt{n^2}}=lim\frac{1}{\sqrt{4+\frac{2}{n^2}}+\sqrt{1}}=\frac{1}{\sqrt{4}+\sqrt{1}}=\frac{1}{3}\)
\(lim\frac{\sqrt{4n+2}-\sqrt{2n-5}}{\sqrt{n+3}}=lim\frac{\sqrt{4+\frac{2}{n}}-\sqrt{2-\frac{5}{n}}}{\sqrt{1+\frac{3}{n}}}=\frac{2-\sqrt{2}}{1}=2-\sqrt{2}\)
l\\(lim\frac{\sqrt{4n^2+n+1}-n}{n^2+2}=lim\frac{\sqrt{4+\frac{1}{n}+\frac{1}{n^2}}-1}{n+\frac{2}{n}}=\frac{1}{\infty}=0\)
\(lim\frac{\sqrt{9n^2+n+1}-2n}{3n^2+2}=\frac{\sqrt{9+\frac{1}{n}+\frac{1}{n^2}}-2}{3n+\frac{2}{n}}=\frac{1}{\infty}=0\)
Muốn giúp bạn lắm mà ko sao dịch được đề :D
Bạn sử dụng công cụ gõ công thức, nó ở ngoài cùng bên trái khung soạn thảo, chỗ khoanh đỏ ấy, cực dễ sử dụng
cho dãy (xn) thỏa mãn x1=1
xn+1 - căn(xn+1) = xn + căn(xn) + 1/(n+4)
tính lim(xn/(n2))
Có ai có thể giúp mình làm cái đề này được không?
* Bài tập tương tự: Tìm các giới hạn sau:
a) lim(căn(n²-2n-1)-căn(m²-7n+3))
b) lim(1+n²-căn(n⁴+3n+1))
c) limcăn(n+1)-căn(n)
d) limcăn(n²+n+1)-n
Bạn xem lại câu a nhé! Làm gì phải là m2
b) \(lim\left(1+n^2-\sqrt{n^4+3n+1}\right)=lim\frac{\left(n^4+2n^2+1\right)-\left(n^4+3n+1\right)}{1+n^2+\sqrt{n^4+3n+1}}\)
\(=lim\frac{2n^2+3n}{1+n^2+\sqrt{n^4+3n+1}}=lim\frac{2+\frac{3}{n}}{\frac{1}{n^2}+1+\sqrt{1+\frac{3}{n}+\frac{1}{n^2}}}=\frac{2}{2}=1\)
c) = \(lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=0\)
d) = \(lim\frac{n+1}{\sqrt{n^2+n+1}+n}=lim\frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}+1}=\frac{1}{2}\)
Hình ảnh của đề trên mọi người có thể giúp mình được không ạ?
*Bài tập tương tự: Tìm các giới hạn sau:
a) lim(2n+cos2n);
b) lim(1/2n²-3sin4n+6);
c) lim³căn(n³+n²+n+1);
d) lim³căn(n⁶+n⁵-7n+8)/(-2n+6);
Đây là ảnh của câu hỏi trên giải giúp với
Bài 1: Tìm điều kiện của x để các biểu thức sau có nghĩa.
a) Căn(x-2) + 1/căn(x-3)
b) Căn (x+3/x-2)
Bài 2: Thức hiện phép tính.
a) A= Căn(2- căn 5)2 - căn 5
b) B= Căn (7- 4căn3) + căn 3
c) C= Căn (5 - 2căn6) + Căn (5 + 2căn6)
d) D= (căn 2 + căn 10) / (1 + căn 5)
e) E= Căn(2 - căn 3) + Căn(2 + căn3)
lim căn (n^3-3n)-n+5
\(lim\left(\sqrt{n^3-3n}-n+5\right)=lim\left[n^{\dfrac{3}{2}}.\left(\sqrt{\dfrac{n^3}{n^3}-\dfrac{3n}{n^3}}-\dfrac{n}{n^{\dfrac{3}{2}}}+\dfrac{5}{n^{\dfrac{3}{2}}}\right)\right]=+\infty\)