em hãy c/m trong tg ABC có CA+CB>AB và BA+BC>CA
Em hãy chứng minh ,tam giác ABC có CA+CB>AB và BA +BC >CA
Áp dụng bất đẳng thức trong tam giác ABC:
=> CA+CB>AB;BA+BC>CA
Trong tam giác ABC kẻ AD sao cho AD _|_ BC ( D thuộc BC )
Xét tam giác ADC vuông tại D có :
Theo định lý Py-ta-go : AD2+DC2=AC2
=> DC > AC (1)
Xét tam giác ADB vuông tại D có :
Theo định lý Py-ta-go : AD2+DB2=AB2
=> DB<AB (2)
Từ (1) và (2) <=> DC+DB<AC+AB hay AB+AC>BC
11. Cho tam giác ABC vuông tại A và có AB = C , AC =b . Tính vectơ BA. Vectơ BC
12. Cho tg ABC có AB =2cm , BC = 3cm , CA= 5cm. Tính vectơ CA. Vectơ CB
13. Cho tg ABC có BC =a , CA = b , AB =c. Tính P = ( vectơ AB + vectơ AC). Vectơ BC
14. Cho tg ABC có BC =a , CA = b , AB =c. Gọi M là trung điểm cạnh BC. Tính vectơ AM. Vectơ BC
Cho tam giác ABC. Trên tia đối của AB lấy điểm D sao cho AC = AD
Khi đó AB + AC = AB + AD = BD, còn ACD là tam giác cân, nên góc ACD = góc ADC, tức là góc BDC = góc ACD
Mặt khác, do tia CA nằm giữa CB và CD nên góc BCD > góc DCA
Khi đó, trong tam giác BCD có: góc BCD > góc BDC nên BD > BC hay AB + AC > BC
Tương tự, em hãy chứng minh, trong tam giác ABC có: CA + CB > AB và BA + BC > CA
em hãy chứng minh, trong tam giác ABC có : CA+CB>AB và BA+BC>CA
ap dung bất đẳng thức tam giac
xét tam giac ABCcó CA+CB>AB
BA+BC>CA
em hãy chứng minh trong tam giác ABC có CA+CB>AB và BA+BC>CA
Trong tam giác ABC kẻ AD sao cho AD _|_ BC ( D thuộc BC )
Xét tam giác ADC vuông tại D có :
Theo định lý Py-ta-go : AD2+DC2=AC2
=> DC > AC (1)
Xét tam giác ADB vuông tại D có :
Theo định lý Py-ta-go : AD2+DB2=AB2
=> DB<AB (2)
Từ (1) và (2) <=> DC+DB<AC+AB hay AB+AC>BC
Kẻ AH ⊥ BC
Xét ΔABH vuông tại H có:
∠AHB vuông, nên AB là cạnh lớn nhất
do đó: AB>BH (1)
Xét ΔACH vuông tại H có:
∠AHC vuông, nên AC là cạnh nhất
do đó: AC>CH (2)
Từ (1),(2) ta suy ra: AB+AC>BH+CH
Mà BH +CH=BC
nên AB+AC>BC
Giả sử BC là cạnh lớn nhất, ta suy ra:
AB<BC
AC<BC
Vậy AC+BC>AB; AB+BC>AC
cho tam giác abc. hãy xác định các vecto: AB+ BC, CB + BA ; AB + CA ; BA + CB ; CB- CA ; AB - CA
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) ; \(\overrightarrow{CB}+\overrightarrow{BA}=\overrightarrow{CA}\) ; \(\overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB}\)
\(\overrightarrow{BA}+\overrightarrow{CB}=\overrightarrow{CA}\) ; \(\overrightarrow{CB}-\overrightarrow{CA}=\overrightarrow{CB}+\overrightarrow{AC}=\overrightarrow{AB}\)
\(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) (với M là trung điểm BC)
Chứng minh trong một tam giác ABC có: CA + CB > AB và BA + BC >CA
Trong 1 tam giác, tổng 2 cạnh bất kì luôn lớn hơn cạnh còn lại nên CA + CB> AB và BA + BC> CA
Cho tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA. Hãy so sánh các góc AMB và ANC.
Trong ΔABC, ta có AC > AB
Suy ra: ∠(ABC) > ∠(ACB) (đối diện với cạnh lớn hơn là góc lớn hơn) (1)
Ta có: AB = BM (gt) ⇒ ΔABM cân tại B
Suy ra: ∠(AMB) = ∠A1(tính chất tam giác cân)
Trong ΔABM, ta có ∠(ABC) là góc ngoài tại đỉnh B
Suy ra: ∠(ABC) = ∠(AMB) + ∠A1 hay : ∠(ABC) = 2.∠(AMB)
Suy ra: ∠(AMB) = 1/2 ∠(ABC) (2)
Lại có: AC = CN (gt) ⇒ ΔACN cân tại C
Suy ra: ∠(ANC) = ∠A2(tính chất tam giác cân)
Trong ΔACN, ta có ∠(ACB) là góc ngoài tại đỉnh C
Suy ra: ∠(ACB) = ∠(ANC) + ∠A2 hay ∠(ACB) = 2∠(ANC)
Suy ra: ∠(ANC) = 1/2 ∠(ACB) (3)
Từ (1), (2) và (3) suy ra: ∠(AMB) > ∠(ANC) .
Cho tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA. Hãy so sánh các độ dài AM và AN.
Trong ΔAMN, ta có: ∠(AMB) > ∠(ANC)
Suy ra: AN > AM (đối diện với góc lớn hơn là cạnh lớn hơn).