Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sao Băng
Xem chi tiết
Lê Nhật Khôi
3 tháng 11 2017 lúc 21:52

Áp dụng hằng đẳng thức mà làm 

Sao Băng
3 tháng 11 2017 lúc 22:00

Hàng đẳng thức nào

Nguyen Thi Phuong Anh
4 tháng 11 2017 lúc 20:27

nhung hdt dang nho do ban

Aquarius Love
Xem chi tiết
Hà Chí Dương
26 tháng 3 2017 lúc 17:39

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

Vũ Như Mai
26 tháng 3 2017 lúc 17:43

Chả hiểu cái đề :((

Trần Dương An
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Ngọc Lộc
3 tháng 8 2020 lúc 20:38

Ta có : \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{a^3b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{a^2b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{ab}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{1}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{1}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{1}\right)\)

=> \(P=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2+2a\right)-6a}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a+b\right)^2}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}+\frac{6}{\left(a+b\right)^4}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}=\frac{2a^2+4ab+2b^2}{\left(a+b\right)^2}-\frac{a^2+b^2}{\left(a+b\right)^2}\)

=> \(P=2-\frac{a^2+b^2}{\left(a+b\right)^2}=1+\frac{-2}{\left(a+b\right)^2}\)

Nga Nguyễn
Xem chi tiết
Nguyễn Thái Bình
Xem chi tiết
Đặng Minh Quân
26 tháng 3 2016 lúc 0:35

a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)

b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)

c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)

                              \(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)

d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)

        

Simmer Williams
Xem chi tiết
Nguyễn Phương Chi
Xem chi tiết