Cho tam giác ABC , trên tia đối của CB , lấy E sao cho EC = 1/2 BC . Gọi D là trung điểm của AC . ED cắt AB tại N . c/m AB=4.AN
Cho tam giác ABC , trên tia đối của CB , lấy E sao cho EC = 1/2 BC . Gọi D là trung điểm của AC . ED cắt AB tại N . c/m AB=4.AN
HOÀNG THỊ NGỌC ANH
Giải bài nữa chứ!! sao mới vẽ hình thôi vậy
Cho tam giác ABC , trên tia đối của CB , lấy E sao cho EC = 1/2 BC . Gọi D là trung điểm của AC . ED cắt AB tại N . c/m AB=4.AN
Từ C vẽ tia Cx song song với ND, cắt AB tại I
Xét tam giác ACI có: ND//CI mặt khác D trung điểm Ac => N trung điểm AI
=> 2.NI=AI hoặc 2.AN=AI (1)
Xét tam giác BNE có: CI // NE (CI//ND mà N,D,E thẳng hàng)
=> \(\frac{BC}{CE}=\frac{BI}{NI}\) =2 (BC = 2CE) => \(\frac{BI}{NI}=2\) <=> \(BI=2.NI\) <=> BI=AI (theo 1) mặt khác A,I,B thẳng hàng => I trung điểm BC => 2.BI=AB
<=> 2. 2.NI=AB <=> 4NI=AB mà NI=AN => 4.AN=AB (đpcm)
Cho tam giác ABC vuông tại A có AB = 8cm, BC = 10cm. Trên tia đối của AB lấy D sao cho A là trung điểm của BD, Gọi H là trung điểm của BC, DH cắt AC tại M. Đường trung trực d của AC cắt DC tại P. Chứng minh B, M, P thẳng hàng.
Cho tam giác ABC , I là trung điểm của BC , đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D . Trên tia đối của tia ID , lấy điểm E sao cho IE bằng ID . Gọi H la trung điểm của CE và AB . Chứngng minh tam giác AHC là tam giác vuông
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Cho tam giác ABC, I là trung điểm của BC. Đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D. Trên tia đối của tai ID lấy điểm E sao cho IE=ID. Gọi H là giao điểm của CE và AB. Chứng minh rằng: tam giác AHC là tam giác vuông.
Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)
=> Tam giác CIE = Tam giác BID (c.g.c)
^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong
=> CE//BD hay BD//CH. Mà BD vuông góc với AB
=> CH vuông góc với AB (Quan hệ //, vg góc)
=> Tam giác AHC vuông tại H (đpcm).
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
Cho tam giác ABC có AB = AC. Kẻ tia phân giác của góc BAC cắt BC tại H.
a) Chứng minh tam giác ABH = tam giác ACH từ đó suy ra AH vuông góc với BC
b) Trên tia đối HA lấy điểm D sao cho AH = DH. Chứng minh AC//BD
c) Lấy điểm M thuộc tia AC ( M khác A, C ) sao cho tia MH cắt BD tại K. Chứng minh AM = KD.
d) Gọi N là trung điểm AB. Trên tia CN lấy E sao cho CN = NE ( E khác C ). Chứng minh B là trung điểm ED
( Vẽ hình và giải thích dùm mình nha! Đang cần gấp! )
cho tam giác abc , kẻ bd vuông góc với ac , ce vuông góc với ab. Trên tia đối của tia de lấy điểm n, trên tia đối của tia ed lấy điểm m sao cho dm=en . Gọi o là trung điểm của bc
Chứng minh tam giác omn là tam giác cân