a:b=9:4 và b:c=5:3. Tính\(\frac{a-b}{b-c}\)
Cho a:b = 9:4 và b:c = 5:3. Tính \(\frac{a-b}{b-c}\)
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)(1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)(2)
Từ (1) và (2) => \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt : \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\) => a = 45k ; b = 20k ; c = 12k . Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{k\left(45-20\right)}{k\left(20-12\right)}=\frac{45-20}{20-12}=\frac{25}{8}\)
Cho a:b=9:4; b:c=5:3. Tính \(\frac{a-b}{b-c}\)
Ta có :
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\) (1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k;b=20k;c=12k\) Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Ta thấy mẫu số và tử số đều có b nên:
\(\frac{a}{b}=\frac{9}{4}=>a=\frac{9b}{4}\left(1\right)\)
\(\frac{b}{c}=\frac{5}{3}=>c=\frac{3b}{5}\left(2\right)\)
Thay 1 và 2 vào ta có (a/b)/(b-c) = (9b/4 - b) / (b -3b/5) = \(\frac{25}{8}\)
a : b = 9 :4 => a/9 = b/4 (1)
b : c = 5 : 3 => b/5 = c/3 (2)
từ (1) và (2) => a/9 = b/4 = b/5 = c/3 => a/45 = b/20 = c/12
Đặt a/45 = b/20 = c/12 = k
=> a = 45.k
b = 20.k
c = 12.k
Theo bài ra ta có a-b/b-c => 45k-20k/20k-12k = k.(45-20)/k.(20-12) = k.25/k.8 = 25/8 hoặc 3,125
đúng 100% nha bạn. chọn mình nha. mình giải đầu tiên.
Cho a:b=9:4; b:c=5:3. Tính \(\frac{a-b}{b-c}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left\{\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Tìm tỉ số (a-b):(b-c) biết a:b=9:4 và b:c=5:3
- Xét: a : b = 9 : 4 \(\Rightarrow\frac{a}{9}=\frac{b}{4}\)\(\Rightarrow\frac{a}{45}=\frac{b}{20}\)
b : c = 5 : 3 \(\Rightarrow\frac{b}{5}=\frac{c}{3}\)\(\Rightarrow\frac{b}{20}=\frac{c}{12}\)
=> \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
- Đặt: \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\hept{\begin{cases}a=45.k\\b=20.k\\c=12.k\end{cases}}\)
-Thay a = 45.k, b = 20.k , c = 12.k vào \(\frac{a-b}{b-c}\) ;ta có:
\(\frac{a-b}{b-c}=\frac{45.k-20.k}{20.k-12.k}=\frac{25.k}{8.k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
cho a:b= 2:5; b:c= 4:3 và a.b-c^2= -10,4. tính /a+b+c/
a:b=2:5; b:c=4:3=>\(\frac{a}{2}=\frac{b}{5};\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\)
Đặt \(k=\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\Rightarrow k^2=\frac{a.b}{8.20}=\frac{c^2}{225}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(k^2=\frac{a.b}{160}=\frac{c^2}{225}=\frac{a.b-c^2}{160-225}=\frac{-10,4}{-65}=0,16\)
\(\Rightarrow\left[\begin{array}{nghiempt}k=0,4\\k=-0,4\end{array}\right.\)
Với k=0,4=>a=3,2; b=8; c=6=>|a+b+c|=17,2
Với k=-0,4 =>a=-3,2; b=-8; c=-6=>|a+b+c|=17,2
Vậy|a+b+c|=17,2
Cho a:b = 2:5 ; b:c = 4:3 và a.b - c2 = -10,4. Tính a, b, c?
cho a:b=9:4 và b:c = 5:3 . Tìm tỉ số (a-b) : (b-c)
giải cụ thể ha
tìm ba số a,b và c biết a:b=3:4;b:c=8:9 và c+a=60
dat \(\frac{a}{3}\)=\(\frac{b}{4}\)=k =>a=3k va b=4k
ma \(\frac{b}{8}\)=\(\frac{c}{9}\) nen \(\frac{4k}{8}\)=\(\frac{c}{9}\)=> c=\(\frac{9k}{2}\)
theo bai ra c+a=60 =>3k+\(\frac{9k}{2}\)=60 =>\(\frac{6k+9k}{2}\)=60 =>15k=120 => k= 8
nen a=3*8=24 b=4*8=32 c=\(\frac{9\cdot8}{2}\)=36
a:b = 9:4 ; b:c =5:3
tính : \(\dfrac{a-b}{b-c}\)
Giải:
Ta có: \(\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left[\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Theo bài ra:
\(\dfrac{a}{b}=\dfrac{9}{4}\Rightarrow a=\dfrac{9}{4}.b\)
\(\dfrac{b}{c}=\dfrac{5}{3}\Rightarrow c=b:\dfrac{5}{3}\)
Thay \(a=\dfrac{9}{4b};c=b:\dfrac{5}{3}\) vào \(\dfrac{a-b}{b-c}\), ta có:
\(\dfrac{\dfrac{9b}{4}-b}{b-\dfrac{3b}{5}}=\dfrac{\dfrac{9b}{4}-\dfrac{4b}{4}}{\dfrac{5b}{5}-\dfrac{3b}{5}}=\dfrac{5b}{4}:\dfrac{2b}{5}=\dfrac{5b}{4}.\dfrac{5}{2b}=\dfrac{25}{8}\)
Vậy: \(\dfrac{a-b}{b-c}=\dfrac{25}{8}\)