Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cấn Thị Diệu Linh
Xem chi tiết
Thân Trọng Trí
19 tháng 1 2016 lúc 23:25

a) bc\(^2\)= ab\(^2\)+ bc\(^2\)= 16+16=32

=> bc=\(\sqrt{32}\)

b) Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D có:

Cạnh huyền AB=AC (tam giác ABC vuông cân tại A)

Góc nhọn B=C (tam giác ABC vuông cân tại A)

Do đó ABD=ACD (cạnh huyền-góc nhọn)

=>BD=CD (2 cạnh tương ứng)

=> D là trung điểm của BC

c)Ta có:

AB vuông góc với AC (gt)

DE vuông góc với AB (gt)

=> AC//DE

=> Góc DCA+EDC= 180\(^0\) (2 góc trong cùng phía)

=> EDA+ADC+DCA=180\(^0\)

Mà ADC=90\(^0\)

Nên EDA+DCA=90\(^0\)

Ta có: Tam giác ABC vuông cân tại A

=>ABC+ACB=90\(^0\)

mà ABC+BAD=90\(^0\)(tam giác ABD vuông tại D)

nên ACB=BAD

=> BAD=ABC (1)

Ta có: ABC+BDE=90\(^0\)

Mà BDE+EDA=90\(^0\)

Nên ABC=EDA (2)

Từ (1) và (2) suy ra: BAD=EDA

Tam giác AED có: BAD=EDA

                            DEA=90\(^0\)

Do đó tam giác ADE vuông cân tại E

 

chuong Nguyen Duy
Xem chi tiết
Vũ Minh Tuấn
2 tháng 2 2020 lúc 21:16

c) Vì D là trung điểm của \(BC\left(gt\right)\)

=> \(AD\) là đường trung tuyến của tam giác vuông \(ABC.\)

=> \(AD=\frac{1}{2}BC\) (tính chất tam giác vuông).

\(CD=\frac{1}{2}BC\) (vì D là trung điểm của \(BC\)).

=> \(AD=CD.\)

Xét 2 \(\Delta\) vuông \(AED\)\(CED\) có:

\(\widehat{AED}=\widehat{CED}=90^0\left(gt\right)\)

\(AD=CD\left(cmt\right)\)

Cạnh ED chung

=> \(\Delta AED=\Delta CED\) (cạnh huyền - cạnh góc vuông).

=> \(\widehat{ADE}=\widehat{CDE}\) (2 góc tương ứng) (1).

+ Vì \(\Delta AED\) vuông tại \(E\left(gt\right)\)

=> \(\widehat{DAE}+\widehat{ADE}=90^0\) (tính chất tam giác vuông) (2).

Ta có: \(\widehat{ADE}+\widehat{CDE}=\widehat{ADC}.\)

=> \(\widehat{ADE}+\widehat{CDE}=90^0\) (3).

Từ (1), (2) và (3) => \(\widehat{DAE}=\widehat{ADE}.\)

=> \(\Delta AED\) cân tại \(E.\)

\(\Delta AED\) vuông tại \(E\left(gt\right)\)

=> \(\Delta AED\) vuông cân tại \(E\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Kieu Diem
2 tháng 2 2020 lúc 19:26

a) Xét ΔABC , có :

BC2 = AB2 + AC2 (định lí Py-ta-go )

BC2 = 42 + 42

BC2 = 32

BC = 32

b) Xét ΔABDΔACD , có :

AB = AC ( ΔABC vuông cân tại A )

ABD^=ACD^ ( ΔABC vuông cân tại A )

ADB^=ADC^=900

=> ΔABD=ΔACD ( cạnh huyền - góc nhọn )

=> BD = DC ( 2 cạnh tương ứng )

=> D là trung điểm của BC )

Khách vãng lai đã xóa
Lê Thảo
Xem chi tiết
Fudo
14 tháng 1 2020 lúc 14:27

                                                              Bài giải

A B C D E

Tam giác ABC vuông cân tại A \(\Rightarrow\text{ }\widehat{B}=\widehat{C}\)

a, Áp dụng định lý Pytago vào tam giác Vuông cân ABC ta được :

\(BC^2=AB^2+AC^2=4^2+4^2=32\)

\(BC=\sqrt{32}\)

b, Xét Tam giác vuông BDA và Tam giác vuông CDA có : 

AB = AC ( gt )

AD : cạnh chung

=> Tam giác BDA = Tam giác CDA ( cạnh huyền - cạnh góc vuông )

=> BD = CD ( cạnh tương ứng ) 

=> D là trung điểm của BC

Còn lại chịu

Khách vãng lai đã xóa
Laura
15 tháng 1 2020 lúc 0:21

Hình tự vẽ :<

 GT

△ABC vuông cân ở A

AB=AC=4cm

Từ A kẻ AD\(\perp\)BC

Từ D kẻ DE\(\perp\)AC 

KL

BC=?, AD=?

D: trđ BC

△AED vuông cân

a) Xét △ABC vuông ở A

\(\Rightarrow\)AB2+AC2=BC2 (định lí Pythagoras)

\(\Rightarrow\)BC2=2.42

\(\Rightarrow\)BC=căn 32

Vậy BC=căn 32 cm

b) Xét △BAD và △CAD có:

BDA=CDA (=90o)

AD: chung

AB=AC (gt)

\(\Rightarrow\)△BAD=△CAD (ch-cgv)

\(\Rightarrow\)DB=DC (2 cạnh tương ứng)

\(\Rightarrow\)D là trđ BC

c) Ta có: DAB=DAC (△DAB=△DAC)

Mà AB \(\perp\)AC

DE \(\perp\)AC

\(\Rightarrow\)AB//DE

\(\Rightarrow\)BAD=ADE (slt)

mà BAD=CAD

\(\Rightarrow\)DAC=ADE hay DAE=ADE, lại có DEA=90o

\(\Rightarrow\)△ADE vuông cân tại E

d) Ta có: DB=DC (D: trđ BC)

\(\Rightarrow\)DB=căn 32 :2

\(\Rightarrow\)DB=căn 32: căn 4

\(\Rightarrow\)DB= căn 8

Xét △ABD vuông tại D

\(\Rightarrow\)BD2+AD2=AB2 (định lí Pythagoras)

\(\Rightarrow\)AD2=AB2-BD2

\(\Rightarrow\)AD= căn 8

Vậy AD=căn 8 cm

Khách vãng lai đã xóa
Lê Thảo
Xem chi tiết
Ho Duc Nguyen
14 tháng 1 2020 lúc 14:46

kvjhiobug9d8ie

Khách vãng lai đã xóa
Trần Nam Hải
14 tháng 1 2020 lúc 15:00

A B c D E

a) Xét \(\Delta\)ABC vuông cân tại A 

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=4^2+4^2\)

\(\Rightarrow BC=\sqrt{4^2+4^2}\)

\(\Rightarrow BC=4\sqrt{2}\)

b) Ta có \(\Delta\)ABC cân tại A có AD là đường cao => AD đồng thời là đường trung tuyến \(\Delta\)ABC

=> AD là đường phân giác & cũng là đường cao \(\Delta\)ABC

=> D là trung điểm BC

c) Vì AD là đường phân giác \(\Delta\)ABC

=>\(\Rightarrow\widehat{BAD}=\widehat{CAD}=45^o\).Lại có \(\Delta\)ADE vuông tại E (DE vuông góc vs AC)

=>  \(\Delta\)ADE vuông cân tại E

Khách vãng lai đã xóa
shitbo
14 tháng 1 2020 lúc 17:51

Tam giác ABC vuông cân ở A nên AB=AC.

Theo định lý Pythagoras ta có:

\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+4^2}=\sqrt{32}\)

AD là đường cao nên AD đồng thời là đường trung tuyến

Hướng 1:đường trung tuyến ứng với cạnh huyền

Khi đó tam giác vuông ABC có đường trung tuyến AD ứng với cạnh huyền BC nên \(AD=\frac{1}{2}BC=\frac{\sqrt{32}}{2}\)

Hướng 2:

Dùng định lý Pythagoras

Khi đó \(BD=\frac{1}{2}BC=\frac{\sqrt{32}}{2}\)

Theo định lý Pythagoras ta có:

\(AD^2+BD^2=AB^2\Rightarrow AD^2=\sqrt{AB^2-BD^2}=\sqrt{4^2-\frac{32}{4}}=\frac{\sqrt{32}}{2}\)

Khách vãng lai đã xóa
nguyễn văn hiếu
Xem chi tiết
thuhang doan
Xem chi tiết
Đặng Xuân Hải Long
Xem chi tiết
Vũ Như Mai
18 tháng 3 2017 lúc 15:17

(Bạn tự vẽ hình nha)

a) Câu này kêu tính BC

Xét tam giác ABC vuông tại A có:

AB^2 + AC^2 = BC^2 (pytago)

4^2 + 4^2      = BC^2

 32               = BC^2

=> BC = \(\sqrt{32}\approx\)5,7 (cm)

b) Ta có tam giác ABC cân tại A

=> AD vừa là đường cao vừa là trung tuyến

=> D là trung điểm BC

c) Ta có tam giác ABC vuông tại A

=> AD = 1/2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)

Mà: DC = 1/2 BC (D là trung điểm BC - cmt)

=> AD = DC

=> tam giác ADC cân tại D

Vì thế nên DE vừa là đường cao vừa là trung tuyến

=> E là trung điểm AC

Ta có: tam giác ADC vuông tại D 

=> DE = 1/2 AC (Trong tam giác vuông, đường trung tuyến...)

Mà: AE = 1/2 AC (vì E là trung điểm AC - cmt)

=> ED = AE

=> tam giác ADE cân tại E

Mà góc DEA = 90 độ

=> Tam giác ADE vuông cân

d) Ta có: AE = ED = 1/2 AC = 1/2 . 4 = 2 (cm)

Xét tam giác ADE vuông tại E có:

AE^2 + DE^2 = AD^2

2^2 + 2^2      = AD^2

8                  = AD^2

=> AD = \(\sqrt{8}\approx\)2,8 (cm)

Lê Thị Khánh Dương
Xem chi tiết
Nguyễn khánh toàn
20 tháng 1 2017 lúc 18:36

Mình chịu câu b

Thắng  Hoàng
28 tháng 1 2018 lúc 9:37

Giải

a) Áp dụng định lí Pytago ta có:

BC=√AB2+AC2

<=> BC= √42+42

<=>BC=4√2(cm)

b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC

<=>DB=DC

Hay D là trung điểm của BC

c) Áp dụng hệ thức lượng trog tam giác có:

AB.AC=BC,AD

<=>4.4=4√2.AD

<=>AD= 2√2(cm)

Ta có: DC=4√22=2√2(cm)

Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D

Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)

AE= 42=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)

Áp dụng hệ thức lượng ta có: DE=2√2.2√24=2(cm)

Do AE=DE mà góc AED bằng 90 độ

Nên tam giác AED vuông cân tại E

d) Câu trên tớ đã tính AD= 2√2(cm)

Mình giải hơi tắt 1 tí. Bạn thông cảm nhé. :)))

Giải

a) Áp dụng định lí Pytago ta có:

BC=AB2+AC2−−−−−−−−−−√

<=> BC= 42+42−−−−−−√

<=>BC=42–√

(cm)

b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC

<=>DB=DC

Hay D là trung điểm của BC

c) Áp dụng hệ thức lượng trog tam giác có:

AB.AC=BC,AD

<=>4.4=42–√

.AD

<=>AD= 22–√

(cm)

Ta có: DC=42√2

=22–√

(cm)

Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D

Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)

AE= 42

=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)

Áp dụng hệ thức lượng ta có: DE=22√.22√4

=2(cm)

Do AE=DE mà góc AED bằng 90 độ

Nên tam giác AED vuông cân tại E

thuhang doan
Xem chi tiết