S=2^2+2^3+2^4+2^5+.......+2^20
1.Tính tổng
a) S = 1 + 2 + 2^2 + 2^3 + ... + 2^2022
b) S = 3 + 3^2 + 3^3 + ... + 3^2022
c) S = 4 + 4^1 + 4^2 + 4^3 + ... + 4^2022
d) S = 5 + 5^2 + 5^3 + ... + 5^2022
2.Tính tổng A = 1^2 + 2^2 + 3^3 + ... + 20^2
3.Tìm X
a) 2^X + 2^X+3 = 5^2
b) (X - 5)^2022 = (X - 5)^2021
c) (2 . X + 1)^3 = 9 . 81
4.Tìm tập hợp các số tự nhiên X, biết rằng 5^2X-1 thỏa mãn điều kiện 100 < 5^2X-1 < 5^6
5.So sánh
a) 3^2N và 2^3N
b)199^20 và 2003^15
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3
tính tống S= -1/2-1/3-1/4-...-1/20+3/2+4/3+5/4+...+21/20.vậy tổng S=?
Tổng S = -1/2 - 1/3 - 1/4 - .........-1/20 +3/2 +4/3 +5/4 +.....+21/20
\(-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{20}+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{21}{20}\)
S=-1/2-1/3-1/4-...-1/20+3/2+4/3+5/4+...+21/20
=>S=(3/2-1/2)+(4/3-1/3)+(5/4-1/4)+...+(21/20-1/20)
=>S=1+1+1...+1
Ta thấy S có 20 số hạng
=>S=20
1) Cho A=4+4^2+2^4+...+2^20.Hỏi A có chia hết cho 128 ko ?
2) Cho S =5+5^2+5^3+...+5^2006.
a) Tính S
b) Chứng minh: S chia hết cho 126 .
4) Cho C =3+3^2+3^3+3^4+....+3^300.Chứng tỏ C chia hết cho 40
S= -1/2-1/3-1/4-.....-1/12+3/2+4/3+5/4+....+21/20.Tính S
Sửa đề : S= -1/2-1/3-1/4-.....-1/20 + 3/2 + 4/3 + 5/4 + ... + 21/20 . Tính S
\(S=\left(\frac{3}{2}-\frac{1}{2}\right)+\left(\frac{4}{3}-\frac{1}{3}\right)+\left(\frac{5}{4}-\frac{1}{4}\right)+...+\left(\frac{21}{20}-\frac{1}{20}\right)\)
\(S=1+1+1+...+1\)( 20 số 1 )
\(S=20\)
1/ Tính tổng S=-1/2-1/3-1/4-.....-1/20+3/2+4/3+5/4+...+21/20
2/ Tổng hai số tự nhiên a;b thỏa mãn (a+1)2+(b-2)2=4
B = 1 + 5 + 52 + 53 + ....... + 52008 + 52009
S = 1 + 2 + 5 + 14 + ....... + 3n-1 + 1/2 (với n thuộc Z)
A = 1 + 3/2^3 + 4/2^4 + 5/2^5 + ...... + 100/2^100
Q = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) + ...... + 1/20*(1+2+3+.....+20)
M = -4/1*5 - 4/5*9 - 4/9*13 - ....... - 4/(n+4)*n
Giúp mk với! Mk đang cần gấp lắm !!!!!
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow 2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
Trừ theo vế:
\(2A-A=1+\frac{3}{2^2}+\frac{4-3}{2^3}+\frac{5-4}{2^4}+\frac{6-5}{2^5}+...+\frac{100-99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{3}{4}-\frac{100}{2^{100}}+(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
Đặt \(T=(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
\(\Rightarrow 2T=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Trừ theo vế: \(2T-T=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Leftrightarrow T=\frac{1}{4}-\frac{1}{2^{99}}\)
Do đó: \(A=1+\frac{3}{4}-\frac{100}{2^{100}}+\frac{1}{4}-\frac{1}{2^{99}}=2-\frac{102}{2^{100}}\)
Chứng tỏ rẳng tổng sau chia hết cho 5 biết S= 2+2^2+2^3+2^4+.....2^20
Lời giải:
$S=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{17})$
$=15(2+2^5+....+2^{17})\vdots 15\vdots 5$
Tính tổng S= -1/2-1/3-1/4-..-1/20+3/2+4/3+5/4+...+21/20= ta được kết quả là
S=20
Vậy các bạn cho mình hỏi cách tính như thế nào để ra 20 được không ?