\(\int xsin\sqrt{x}\)dx
Tìm các nguyên hàm sau
1.\(\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
2.\(\int\frac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^3}dx\)
3.\(\int\frac{x}{\sqrt{2x+3}}dx\)
4.\(\int\) \(\frac{e^{2x}}{\sqrt{1+e^x}}\) dx
5.\(\int\frac{\sqrt[3]{1+lnx}}{x}dx\)
6.\(\int\) cosxsin3xdx
7.\(\int\) (x2+2x-1)exdx
8.\(\int\) excosxdx
9.\(\int\) xsin(2x+1)dx
10.\(\int\) (1-2x)e3xdx
Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)
a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)
\(\Rightarrow9x^2dx=-6udu\)
\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)
b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)
\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)
c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)
\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)
d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)
\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)
\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)
e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)
\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)
f/ \(I=\int cosx.sin^3xdx\)
Đặt \(u=sinx\Rightarrow du=cosxdx\)
\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)
Từ phần này trở đi mới bắt đầu xài nguyên hàm từng phần:
g/ \(I=\int\left(x^2+2x-1\right)e^xdx\)
Đặt \(\left\{{}\begin{matrix}u=x^2+2x-1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+2\right)dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+2x-1\right)e^x-\int\left(2x+2\right)e^xdx\)
Xét \(J=\int\left(2x+2\right)e^xdx\)
Đặt \(\left\{{}\begin{matrix}u=2x+2\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow J=\left(2x+2\right)e^x-\int2e^xdx=\left(2x+2\right)e^x-2e^x+C=2x.e^x+C\)
\(\Rightarrow I=\left(x^2+2x-1\right)e^x-2x.e^x+C=\left(x^2-1\right)e^x+C\)
Tính nguyên hàm của:
1, \(\int\)\(\dfrac{x^3}{x-2}dx\)
2, \(\int\)\(\dfrac{dx}{x\sqrt{x^2+1}}\)
3, \(\int\)\((\dfrac{5}{x}+\sqrt{x^3})dx\)
4, \(\int\)\(\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx\)
5, \(\int\)\(\dfrac{dx}{\sqrt{1-x^2}}\)
a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)
b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)
Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)
\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)
\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)
c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)
d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)
e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)
tìm hộ em nguyên hàm bài này với \(\int\frac{1+xsin\left(x\right)}{\cos^2\left(x\right)}dx\)
Tacó
\(\int\frac{1+xsin\left(x\right)}{cos^2\left(x\right)}dx\\ =\int\frac{1}{cos^2x}dx+\int xd\left(\frac{1}{cosx}\right)\\ =tanx+\frac{x}{cosx}-\int\frac{1}{cosx}dx\\ =tanx+\frac{x}{cosx}-\int\frac{1}{1-sin^2x}d\left(sinx\right)\\ =KQ\)
Chỗ cos hay tan với x tự cách nha. Mình đang ôn thi nên kiểu này quên nhanh lắm, sai thì thông cảm nhé
Lời giải:
\(P=\int \frac{1+x\sin x}{\cos ^2x}dx=\int \frac{1}{\cos ^2x}dx+\int \frac{x\sin x}{\cos ^2x}dx\)
Ta thấy:
\(\int \frac{1}{\cos ^2x}dx=\tan x+c\)
Dựa vào công thức $u,v$:
\( \int \frac{x\sin x}{\cos ^2x}dx\)\(=x\sin x\tan x-\int \tan x(\sin x+x\cos x)dx\)
\(=x\sin x\tan x-\int \tan x\sin xdx-\int x\tan x\cos xdx\)
\(=x\sin x\tan x-\int \frac{\sin ^2x}{\cos x}dx-\int x\sin xdx\)
Trong đó:
\(\int \frac{\sin ^2x}{\cos x}=\int \frac{\sin ^2xd(\sin x)}{\cos ^2x}=\int \frac{\sin ^2xd(\sin x)}{1-\sin ^2x}=\int \frac{t^2dt}{1-t^2}=\int (-1+\frac{1}{1-t^2})dt\)
\(=-\int dt+\int \frac{dt}{1-t^2}=-\int dt+\frac{1}{2}\int (\frac{1}{1-t}+\frac{1}{1+t})dt\)
\(=-t-\frac{1}{2}\ln |t-1|+\frac{1}{2}\ln |t+1|+c=-\sin x-\frac{1}{2}\ln |\sin x-1|+\frac{1}{2}\ln |\sin x+1|+c\)
Và:
\(\int x\sin xdx=x(-\cos x)+\int \cos xdx=-x\cos x+\sin x+c\)
Do đó:
\(\int \frac{x\sin x}{\cos ^2x}dx=x\sin x\tan x+\frac{1}{2}\ln |\frac{\sin x-1}{\sin x+1}|+x\cos x+c\)
\(\Rightarrow P=\tan x+x\sin x\tan x+\frac{1}{2}\ln |\frac{\sin x-1}{\sin x+1}|+x\cos x+c\)
Cho em hỏi câu này nguyên hàm thế nào ạ?
Đề: \(\int xsin\dfrac{x}{3}dx\)
Sử dụng nguyên hàm từng phần:
\(I=\int x.sin\dfrac{x}{3}dx\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\dfrac{x}{3}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\x=-3cos\dfrac{x}{3}\end{matrix}\right.\)
\(\Rightarrow I=-3x.cos\dfrac{x}{3}+3\int cos\dfrac{x}{3}dx=-3x.cos\dfrac{x}{3}+9sin\dfrac{x}{3}+C\)
1.\(\int\dfrac{\sin2x}{\cos^4x-4}dx\)
2.\(\int\sqrt{1-x^2}dx\)
3.\(\int\dfrac{xdx}{\sqrt{1+x^4}}dx\)
giúp mình với mn
1) \(\int\limits^2_1\dfrac{\sqrt{x^2-1}}{x}dx\)
2) \(\int x.\sqrt{1-x^4}dx\)
3)\(\int\dfrac{1}{x^2.\sqrt{25-x^2}}dx\)
4) \(\int\dfrac{\sqrt{x^2-9}}{x^3}dx\)
1) \(\int ln\frac{\left(1+s\text{inx}\right)^{1+c\text{os}x}}{1+c\text{os}x}dx\)
2) \(\int\left(xlnx\right)^2dx\)
3) \(\int\frac{3xcosx+2}{1+cot^2x}dx\)
4)\(\int\frac{2}{c\text{os}2x-7}dx\)
5)\(\int\frac{1+x\left(2lnx-1\right)}{x\left(x+1\right)^2}dx\)
6) \(\int\frac{1-x^2}{\left(1+x^2\right)^2}dx\)
7)\(\int e^x\frac{1+s\text{inx}}{1+c\text{os}x}dx\)
8) \(\int ln\left(\frac{x+1}{x-1}\right)dx\)
9)\(\int\frac{xln\left(1+x\right)}{\left(1+x^2\right)^2}dx\)
10) \(\int\frac{ln\left(x-1\right)}{\left(x-1\right)^4}dx\)
11)\(\int\frac{x^3lnx}{\sqrt{x^2+1}}dx\)
12)\(\int\frac{xe^x}{_{ }\left(e^x+1\right)^2}dx\)
13) \(\int\frac{xln\left(x+\sqrt{1+x^2}\right)}{x+\sqrt{1+x^2}}dx\)
giúp mk đc con nào thì giúp nha
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
Câu 6)
\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)
Câu 8)
\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)
\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)
Xét \(\int \ln tdt\) ta có:
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)
\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)
\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)
Tính :
a) \(\int\limits^3_0\dfrac{x}{\sqrt{1+x}}dx\)
b) \(\int\limits^{64}_1\dfrac{1+\sqrt{x}}{\sqrt[3]{x}}dx\)
c) \(\int\limits^2_0x^2e^{3x}dx\)
d) \(\int\limits^{\pi}_0\sqrt{1+\sin2x}dx\)
1)\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
2)\(\int\frac{dx}{\left(e^x+1\right)\left(x^2+1\right)}\)
3)\(\int\frac{1+2x\sqrt{1-x^2}+2x^2}{1+x+\sqrt{1+x^2}}\)dx
4)\(\int\frac{sin^6x+c\text{os}^6x}{1+6^x}dx\)
5)\(\int_0^{\frac{\pi}{2}}\frac{\sqrt{c\text{os}x}}{\sqrt{s\text{inx}}+\sqrt{c\text{os}x}}dx\)
6)\(\int\frac{x^4}{2^x+1}dx\)
7)\(\int_0^{\frac{\pi^2}{4}}sin\sqrt{x}dx\)
8)\(\int\sqrt[6]{1-c\text{os}^3x}.s\text{inx}.c\text{os}^5xdx\)
9)\(\int\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}.e^x}}dx\)
10)\(\int\frac{c\text{os}x+s\text{inx}}{\left(e^xs\text{inx}+1\right)s\text{inx}}dx\)