Lời giải:
Đặt \(x=t^2\Rightarrow I=\int t^2\sin td(t^2)=2\int t^3\sin tdt\)
Đặt \(\left\{\begin{matrix} u_1=t^3\\ dv_1=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du_1=3t^2dt\\ v_1=-\cos t\end{matrix}\right.\Rightarrow I=-t^3\cos t+3\int t^2\cos tdt\)
Tiếp tục
Đặt \(\left\{\begin{matrix} u_2=t^2\\ dv_2=\cos tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du_2=2tdt\\ v_2=\sin t\end{matrix}\right.\Rightarrow I=-t^3\cos t+3t^2\sin t-6\int t\sin tdt\)
Tiếp tục nguyên hàm từng phần cho \(\int t\sin tdt\)
\(\Rightarrow I=-t^3\cos t +3t^2\sin t+6t\cos t-6\sin t+c\)