tim gia tri nho nhat cua\(\frac{x}{\sqrt{x}-1}\)khi X>1
Cho bieu thuc A=\(\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\div\dfrac{1}{\sqrt{x}-1}\)
a/ Tim dieu kien cua x de bieu thuc A co gia tri xac dinh
b/ Rut gon A
c/ Tinh gia tri cua A khi x = \(4-2\sqrt{3}\)
d/ Tim gia tri nho nhat cua A
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
Tim gia tri lon nhat va gia tri nho nhat cua bieu thuc sau: A=\(\frac{x+1}{x^2+x+1}\)
GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)
Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1
GTNN :
\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)
\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)
tim gia tri nho nhat cua P=\(\frac{x+3\sqrt{x}+2}{x}\)
\(P=\frac{x+3\sqrt{x}+2}{x}\)
ĐKXĐ : x > 0
\(\Rightarrow P=1+\frac{3}{\sqrt{x}}+\frac{2}{x}\)
Đặt \(\frac{1}{\sqrt{x}}=t\)
\(\Leftrightarrow P=2t^2+3t+1\)
\(\Leftrightarrow P=2\left(t^2+2.t.\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right)=2\left(t+\frac{3}{4}\right)^2-\frac{1}{8}\)
\(\Leftrightarrow P=2\left(t+\frac{3}{4}\right)^2+\frac{-1}{8}\)
Có \(2\left(t+\frac{3}{4}\right)^2\ge0\)
\(\Rightarrow P\ge-\frac{1}{8}\)
Vậy MIn P = -1/8 <=> t = -3/4
CTV gì mà ngu vc :)) ĐKXĐ là x dương rồi mà kết quả ra âm => óc lz
tim gia tri nho nhat cua P=\(\frac{x+3\sqrt{x}+2}{x}\)
Cho A \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}+1}{X+\sqrt{X}}\right):\frac{\sqrt{X}+1}{X}\)
a)Tìm dk cua x de A co nghia
b)Rut gon A
c)Tim gia tri nho nhat cua A
tim gia tri nho nhat cua x+\(\sqrt{x}+1\)
ta có A=x+\(\sqrt{x}+1\)=\(\left(\sqrt{x}\right)^2+\sqrt{x}+1\)
ta thấy \(\sqrt{x}^2+\sqrt{x}\ge0\)
=>\(\sqrt{x}^2+\sqrt{x}+1\ge1\)
do đó min A=1
dấu bằng xảy ra \(\Leftrightarrow\)\(\sqrt{x}^2=0\)
\(\Leftrightarrow\)x=0
vậy GTNNcủa A=1 tại x=0
a\Rut gon bieu thuc
b/Tim gia tri nho nhat cua 4A
A=\(\frac{5\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}-\)\(\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(a.A=\frac{5\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}.\)
\(=\frac{5\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{5\sqrt{x}+4+x-2\sqrt{x}+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=-\frac{1}{\sqrt{x}+2}\)
\(b,4A_{min}\Leftrightarrow A_{min}\Rightarrow\frac{-1}{\sqrt{x}+2}\)nhỏ nhất
\(\frac{\Rightarrow1}{\sqrt{x}+2}\)lớn nhất \(\Leftrightarrow\sqrt{x}+2\)nhỏ nhất
\(\sqrt{x}+2\ge2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\Rightarrow A_{min}=\frac{-1}{0+2}=-\frac{1}{2}\Rightarrow4A_{min}=-1\Leftrightarrow x=0\)
Tim gia tri nho nhat cua \(y=\frac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}\) voi x\(\ge\) 1
Đặt t=\(\sqrt{x-1}\Rightarrow t^2-1=x\)
Suy ra: \(y=\frac{t^2-1+3t+1}{t^2-1+4t+2}=\frac{t^2+3t}{t^2+4t+1}\)
=>\(yt^2+4yt+y-t^2-3t=0\)
<=>\(\left(y-1\right)t^2+\left(4y-3\right)t+y=0\)
\(\Delta=16y^2-48y+9-4y^2+4y=12y^2-44y+9\)
Để y có nghĩa thì: \(\Delta\ge0\Rightarrow12y^2-44y+9\ge0\)
Bạn tự xét dấu r làm típ ,nhưng mà số xấu quá
\(\text{Đặt }t=\sqrt{x-1}\Rightarrow t^2+1=x\)
Suy ra: \(y=\frac{t^2+3t+2}{t^2+4t+3}\)
=>\(\left(y-1\right)t^2+\left(4y-3\right)t+3y-2\)
\(\Delta=4y^2-28y+1\)
Để y có nghĩa thì:
\(4y^2-28y+1\ge0\Leftrightarrow y\le\frac{7-4\sqrt{3}}{2};\frac{7+4\sqrt{3}}{2}\le y\)
Số xấu ko bik lại sai chỗ nào
tim gia tri nho nhat cua \(\frac{3}{2+\sqrt{-x^2+2x+7}}\)
\(\frac{3}{2+\sqrt{-x^2+2x+7}}\)=\(\frac{3}{2+\sqrt{8-\left(x-1\right)^2}}\)\(\le\)\(\frac{3}{2+\sqrt{8}}\)
dấu bằng khi x=1
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3