Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Quang Trường
Xem chi tiết
Đào An Nguyên
Xem chi tiết
Ke Giau Mat
13 tháng 11 2016 lúc 20:39

2222222222222222222222222

Ke Giau Mat
13 tháng 11 2016 lúc 20:41

2222222222222222222

Hoàng Thị Hông Nhung
Xem chi tiết
Phạm Thành Nam
Xem chi tiết
ST
2 tháng 3 2017 lúc 20:40

Vì \(\frac{10^{2011}+1}{10^{2012}+1}< 1\)

=> \(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)

Vậy A > B

Linh Luchia
2 tháng 3 2017 lúc 20:36

A>B hay sao y

kudo shinichi
Xem chi tiết
Phùng Thị THu Uyên
9 tháng 5 2015 lúc 22:21

\(A=\frac{2010^{10}-1}{2010^{11}-1}

Nguyễn ngọc Khế Xanh
Xem chi tiết
nguyen the phu
1 tháng 4 2021 lúc 20:38

A=-2015/2015x2016

A=-1/2016

B=-2014/2014x2015

B=-1/2015

vi 2016>2015,-1/2016>-1/2015

vay A>B

Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:06

b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)

Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)

Ta có: \(10^{2010}+1< 10^{2011}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)

\(\Leftrightarrow10A>10B\)

hay A>B

Hatake Kakashi
Xem chi tiết
Phùng Minh Quân
9 tháng 3 2018 lúc 19:22

\(b)\)  Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)

Chúc bạn học tốt ~

Phùng Minh Quân
9 tháng 3 2018 lúc 19:47

Àk mình còn thiếu một điều kiện nữa xin lỗi nhé : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Bạn thêm vào nhé 

Chàng Trai 2_k_7
Xem chi tiết
Lê Hồ Trọng Tín
25 tháng 2 2019 lúc 19:17

A=\(\frac{-199}{10^{2011}}\)

B=\(\frac{-109}{10^{2011}}\)

Dễ dàng so sánh được A<B

Kiri Kudo
15 tháng 7 2019 lúc 8:00

A=-9/102011+(-19/102010)

B=-9/102010+(-19/102011)

Vì -9/102011>(-19/102011) và -9/102011-(-19/102011)=10/102011

-19/102010<(-9/102010) và -9/102010-(-19/102010)=10/102010

mà 10/102011<10/102010 nên suy ra B>A

Đường Trắng
Xem chi tiết
Cô nàng cự giải
30 tháng 6 2018 lúc 9:35

a) Ta có :

\(A=\frac{10^{2010}+1}{10^{2011}+1}\)

\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)

\(B=\frac{10^{2011}+1}{10^{2012}+1}\)

\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)

Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)

\(\Rightarrow A>B\)

Vậy : \(A>B\)

b) Ta có :

\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)

\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)

Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)

Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)

Ninh
30 tháng 6 2018 lúc 9:38

\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)

\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)

\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)

Vậy : B < A