\(P=\dfrac{10^{2010}-1}{10^{2011}-1}\)
\(\Rightarrow10P=\dfrac{10\left(10^{2010}-1\right)}{10^{2011}-1}=\dfrac{10^{2011}-10}{10^{2011}-1}=\dfrac{10^{2011}-1-9}{10^{2011}-1}=1-\dfrac{9}{10^{2011}-1}\)
\(Q=\dfrac{10^{2009}-1}{10^{2010}-1}\)
\(\Rightarrow10Q=\dfrac{10\left(10^{2009}-1\right)}{10^{2010}-1}=\dfrac{10^{2010}-10}{10^{2010}-1}=\dfrac{10^{2010}-1-9}{10^{2010}-1}=1-\dfrac{9}{10^{2010}-1}\)Mà\(\dfrac{9}{10^{2011}-1}< \dfrac{9}{10^{2010}-1}\)
\(\Rightarrow1-\dfrac{9}{10^{2011}-1}>1-\dfrac{9}{10^{2010}-1}\)
Hay \(10P>10Q\Rightarrow P>Q\)