Cho a^2+b^2+c^2+3=2(a+b+c). Chứng minh a=b=c=1
Giúp mình với. Mình đang cần gấp lắm !!!!
Cho 3 số a,b,c với a>b>c. Chứng minh rằng a2-b2+c2>(a-b+c)2
Giúp mình nha, đang cần gấp lắm luôn ý!
giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^
xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha
Cho \(\frac{a}{c}=\frac{c}{b}\)chứng minh rằng \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
Giúp mình với đang cần gấp lắm!
Ai nhanh nhất mình cho 1 tick đúng nhé!
cho a/b=c/d
chứng minh: ac/bd=a^2+c^2/b^2+d^2
giúp mình với mình đang cần gấp
Cái này chị quên cách áp dụng dãy tỉ số rồi, đặt k cho dễ nhé =)).
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\\\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\end{cases}}\)
=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(cùng bằng k2)
Mình thật sự đang cần lời giải gấp lắm. Please giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Cho P(x) = ax^3 + bx^2 + cx +d với a,b,c,d thuộc Z
Biết biểu thức P(x) chia hết cho 5
Chứng minh : a,b,c,d đều chia hết cho 5.
Các bạn ơi , hãy giúp mình nhé, mình đang cần gấp lắm.
a/2022=b/2021=c/2020 chứng minh (c-a)^3=8(c-b)^2.(b-a)
mình đang cần gấp
\(\dfrac{a}{2022}=\dfrac{b}{2021}=\dfrac{c}{2020}=\dfrac{c-a}{-2}=\dfrac{c-b}{-1}=\dfrac{b-a}{-1}\\ \Rightarrow c-a=2\left(c-b\right)=2\left(b-a\right)\\ \Rightarrow\left(c-a\right)^3=\left[2\left(c-b\right)\right]^3=8\left(c-b\right)^2\left(c-b\right)=8\left(c-b\right)^2\left(b-a\right)\)
cho a*d= b*c chứng minh rằng
2a+5b/2c+5d=3a-2b/3c-2d
a^2+b^2/c^2+d^2=a*b/c*d
giúp mình mới mình đang cần gấp
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)
Từ (1) và(2) ta có:
\(\dfrac{2a+5b}{2c+5d}\) = \(\dfrac{3a-2b}{3c-2d}\)(đpcm)
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\) ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)
Cho A = 1/2 mũ 2 + 1/3 mũ 2 + 1/4 mũ 2 +....+ 1/2022 mũ 2 . Chứng minh rằng A< 1
giúp mình với mình cần gấp
A<1/1*2+1/2*3+...+1/2021*2022
=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1
Cho tỉ lệ thức a/b=c/d . Chứng minh : (a+b/c+d)^2 = a^2+b^2/c^2+d^2
Các bạn giúp mình gấp nhé ! Mình đang cần . Cám ơn nhiều
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\
cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)
Gọi a/b=c/d=k(k khác 0)
Ta có:
a=bk
c=dk
VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)
VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)
Từ (1) và (2) suy ra bằng nhau