Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dbrby
Xem chi tiết
The Neil
16 tháng 8 2019 lúc 22:46

\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)

tương tự

\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);

\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);

cộng vế với vế => đpcm

Dấu "=" xảy ra <=> x=y=z=1

Nguyễn Trần Hoàng
16 tháng 8 2019 lúc 21:02

Cô si

Lê Anh Duy
10 tháng 2 2020 lúc 12:19

Cách khác:

\(x^6+y^4\ge2\sqrt{x^6y^4}=2x^3y^2\)

\(\Rightarrow\frac{2}{x^6+y^4}\le\frac{1}{x^2y^2}\)

CMTT , ta có VT \(\le\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\)

Bổ đề: \(a^2+b^2+c^2\ge ab+bc+ca\) ( luôn đúng)

\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)

ĐPCM

Dấu " =" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
Phạm Thanh Trà
Xem chi tiết
Mr Lazy
1 tháng 7 2015 lúc 13:04

Áp dụng bất đẳng thức Cauchy - Schwarz : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\) 

\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1^2}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)(\(\left(a+b\right)^2\ge4a\))

Tương tự: \(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4};\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\)

\(\Rightarrow2.\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge4\left(\frac{x}{x^6+y^4}+\frac{y}{y^6+z^4}+\frac{z}{z^6+x^4}\right)\)

\(\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

 

Đinh quang hiệp
22 tháng 6 2018 lúc 14:29

với x,y,z >0 áp dụng bđt cosi ta có:

\(x^6+y^4>=2\sqrt{x^6y^4}=2x^3y^2\Rightarrow\frac{2x}{x^6+y^4}< =\frac{2x}{2x^3y^2}=\frac{1}{x^2y^2}\)

\(y^6+z^4>=2\sqrt{y^6z^4}=2y^3z^2\Rightarrow\frac{2y}{y^6+z^4}< =\frac{2y}{2y^3z^2}=\frac{1}{y^2z^2}\)

\(z^6+x^4>=2\sqrt{z^6x^4}=2z^3x^2\Rightarrow\frac{2z}{z^6+x^4}< =\frac{2z}{2z^3x^2}=\frac{1}{z^2x^2}\)

\(\Rightarrow\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}< =\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\left(1\right)\)

với x,y,z>0 áp dụng bđt cosi ta có:

\(\frac{1}{x^4}+\frac{1}{y^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{y^4}}=\frac{2}{x^2y^2}\)

\(\frac{1}{y^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{y^4}\cdot\frac{1}{z^4}}=\frac{2}{y^2z^2}\)

\(\frac{1}{x^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{z^4}}=\frac{2}{x^2z^2}\)

\(\Rightarrow\frac{2}{x^4}+\frac{2}{y^4}+\frac{2}{z^4}>=\frac{2}{x^2y^2}+\frac{2}{y^2z^2}+\frac{2}{x^2z^2}\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}>=\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}\)

\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{2x}{x^6+y^4}+\frac{2x}{y^6+z^4}+\frac{2x}{z^6+x^4}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)(đpcm)

dấu = xảy ra khi x=y=z=1

Lê Văn Hoàng
Xem chi tiết
Nguyễn Thiều Công Thành
20 tháng 8 2017 lúc 22:05

áp dụng bđt schwarts ta có:

\(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge\frac{\left(1+1+1\right)^2}{2x+2y+2z+3}\ge\frac{9}{7}\)

\(\Rightarrow1-\frac{1}{2x+1}+1-\frac{1}{2y+1}+1-\frac{1}{2z+1}\le3-\frac{9}{7}\)

\(\Rightarrow\frac{2x}{2x+1}+\frac{2y}{2y+1}+\frac{2z}{2z+1}\le\frac{12}{7}\)

\(\Rightarrow\frac{x}{2x+1}+\frac{y}{2y+1}+\frac{z}{2z+1}\le\frac{6}{7}\left(Q.E.D\right)\)

dấu = xảy ra khi x=y=z=2/3

Kiên-Messi-8A-Boy2k6
Xem chi tiết
Girl
6 tháng 11 2018 lúc 21:07

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{2y+x+z}=\frac{y}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)

\(\frac{z}{2z+x+y}=\frac{z}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

Cộng theo vế:

\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)

Kiệt Nguyễn
9 tháng 8 2020 lúc 20:40

Đặt \(\hept{\begin{cases}2x+y+z=a\\2y+z+x=b\\2z+x+y=c\end{cases}}\Rightarrow a+b+c=4\left(x+y+z\right)=\)

\(4\left(a-x\right)=4\left(b-y\right)=4\left(c-z\right)\Rightarrow\hept{\begin{cases}4x=3a-b-c\\4y=3b-c-a\\4z=3c-a-b\end{cases}}\)

Lúc đó thì \(4VT=\frac{3a-b-c}{a}+\frac{3b-c-a}{b}+\frac{3c-a-b}{c}\)

\(=3-\frac{b}{a}-\frac{c}{a}+3-\frac{c}{b}-\frac{a}{b}+3-\frac{a}{c}-\frac{b}{c}\)

\(=9-\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{b}{c}+\frac{c}{b}\right)-\left(\frac{c}{a}+\frac{a}{c}\right)\le3\)

\(\Rightarrow VT\le\frac{3}{4}\)

Đẳng thức xảy ra khi a = b = c hay x = y = z

Khách vãng lai đã xóa
pham trung thanh
Xem chi tiết
Nguyễn Anh Quân
17 tháng 11 2017 lúc 20:29

Có : (a-b)^2>=0

<=> a^2+b^2-2ab >=0

<=>a^2+b^2 >= 2ab

<=>a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b >0 thì chia cả 2 vế cho (a+b).ab thì :

a+b/ab >= 4/a+b

<=>4/a+b <= 1/a+1/b

<=> 1/a+b <= 1/4.(1/a+1/b)         ( với mọi a,b > 0 )

Áp dụng bđt trên cho x;y;z > 0 thì : x/2x+y+z = x. 1/(x+y)+(z+x) <= x/4 .( 1/x+y+1/x+z) = x/4.(x+y) + x/4.(x+z)

Tương tự : y/x+2y+z <= y/4.(y+x) + y/4.(y+z)

z/x+y+2z <= z/4.(z+x) + z/4.(z+y)

=> VT <= [ x/4.(x+y) + y/4.(y+x) ] + [ y/4.(y+z) + z/4.(z+y) ] + [ z/4.(z+x) + x/4.(x+z) ] = 1/4 + 1/4 + 1/4 = 3/4

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z > 0 

k mk nha

áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với mọi a,b >0 

Thì \(\frac{x}{x+y}+\frac{x}{x+z}\ge\frac{4x}{2x+y+z}\) 

Tương tự thì đpcm 

Cách này nhanh này thành đơ

Nguyen Minh Duc
17 tháng 11 2017 lúc 20:48

hỏi chi hỏi lắm rứa

dbrby
Xem chi tiết
Nguyen Kieu Chi
Xem chi tiết
Huong Vu
Xem chi tiết
hoàng quốc sơn
Xem chi tiết
Đỗ Thị Ngọc Trinh
16 tháng 1 2016 lúc 17:19

chtt

hoàng quốc sơn
16 tháng 1 2016 lúc 20:31

Nhanh to cho card 20