Bài 6 Tìm x,y thuộc Z biết \(25-y^2=8\left(x-2009\right)^2\)
Tìm x,y thuộc N biết: \(25-y^2=8\left(x-2009\right)^2\)
Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)
\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)
Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)
Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)
Ta có: \(25-y^2=8.\left(x-2009\right)^2\)
\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)
Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:
\(8.1+y^2=25\)
\(\Rightarrow8+y^2=25\)
\(\Rightarrow y^2=17\)( loại )
Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:
\(8.0+y^2=25\)
\(\Rightarrow0+y^2=25\)
\(\Rightarrow y^2=25\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Mà \(y\in N\)
\(\Rightarrow y=5,x=2009\)
Vậy \(x=2009,y=5\)
Tìm x; y thuộc N biết:
\(25-y^2=8\cdot\left(x-2009\right)^2\)
Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)
VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)
Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)
\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)
Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))
*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)
*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)
*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)
Vậy x = 5 và y = 2009.
tìm x,y thuộc N biết : \(25-y^2=8\left(x-2009\right)^2\)
Bài1 tìm x
-15/12*x+3/7=6/5*x-1/2
Bài 2 tìm x,y thuộc z
25- y^2=8*(x-2009)^2
Tìm \(x,y\in Z\)biết \(25-y^2=8\left(x-2009\right)^2\)
1. Tìm x,y thuộc Z biết:
a\(25-y^2=8\left(x-2009\right)\)
b \(x^3y=xy^3+1997\)
c x+y+9=xy-7
Có: \(x+y+9=xy-7\)
\(\Leftrightarrow x+16=y\left(x-1\right)\)
\(\Leftrightarrow\frac{x+16}{x-1}=y\)
\(\Leftrightarrow y=1+\frac{17}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(17\right)\)
Bn giải x ra rồi tính y
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Phân tích 1997=1*1997 và ngược lại chia TH giải
Tìm x , y thuộc Z biết : 25 - y ^ 2 = 8 * ( x - 2009 ) ^2
Tìm x,y thuộc N
\(25-y^2=8\left(x-2009\right)^2\)
Ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Rightarrow8\left(x-2009\right)^2\le25\)
\(\Leftrightarrow\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow0\le\left(x-2009\right)^2\le3\)
\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)
+) Trường hợp 1 :
\(\Rightarrow\left(x-2009\right)^2=0\)
\(\Rightarrow x=2009\)
\(\Rightarrow y=5\)
\(\Leftrightarrow\hept{\begin{cases}x=2009\\y=5\end{cases}}\)
+) Trường hợp 2 :
\(\left(x-2009\right)^2=1\)
\(\Rightarrow x-2009=1\)
\(\Rightarrow x=2010\)
\(\Rightarrow25-y^2=8\)
\(\Rightarrow y^2=17\) (loại)
+) Trường hợp 3 :
\(\left(x-2009\right)^2=1\)
\(\Rightarrow x=2008\)
\(\Rightarrow25-y^2=8\)(loại)
Vậy ......
\(\)
a,Tìm x,y thuộc Z biết : 25-y^2=8(x-2009)^2
b,Tìm x,y thuộc N biết : (2008x+3y+1).(2008x+2008x+y)=225