Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cửu vĩ linh hồ Kurama
Xem chi tiết
Thanh Tùng DZ
26 tháng 5 2018 lúc 20:32

Ta có :

\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow\)\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)

Võ Mạnh Tiến
Xem chi tiết
Phạm Đào Nhung Trang
1 tháng 4 2022 lúc 14:39

3 nhân 2/3 bao nhiêu

Khách vãng lai đã xóa
Võ Mạnh Tiến
Xem chi tiết
jksfhisd
Xem chi tiết

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)

\(=(1-1)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}...+\frac{99}{100}\)

Dương Thị Thùy Trang
Xem chi tiết
Cuong Duong
7 tháng 3 2016 lúc 22:43

Ta có:

M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)

M=\(\frac{1.3....99}{2.4....100}\)

Lại có:

N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)

N=\(\frac{2.4....100}{3.5....101}\)

\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)

\(\Rightarrow\)M.N=\(\frac{1}{101}\)

Nguyễn Hải Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 19:00

a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)

=1-1/2+1/2-1/3+...+1/100-1/101

=1-1/101=100/101

b: \(A=1+\dfrac{1}{2}+1+\dfrac{1}{6}+1+\dfrac{1}{12}+...+1+\dfrac{1}{10100}\)

\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)

\(=101-\dfrac{1}{101}< 101\)

mai nguyen
Xem chi tiết
OH-YEAH^^
2 tháng 5 2023 lúc 15:09

`A=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(99xx100)`

`=> A=(2-1)/(1xx2)+(3-2)/(2xx3)+...+(100-99)/(99xx100)`

`=> A=1-1/2+1/2-1/3+...+1/99-1/100`

`=> A=1-1/100`

`=> A=99/100

Kiều Vũ Linh
2 tháng 5 2023 lúc 15:10

Sửa đề:

A = 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(97.98) + 1/(98.99) + 1/(99.100)

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100

= 1 - 1/100

= 99/100

Ho Bao Ngoc
Xem chi tiết
nguyen van
12 tháng 5 2017 lúc 12:23

luc nao minh day cach viet phan 

cho minh 1k song kb rui minh bao

Nguyễn Minh Quân
19 tháng 7 2018 lúc 20:17

ko hieu de

nguyễn thu ánh
Xem chi tiết
Ashes PK249
7 tháng 7 2021 lúc 20:01

\(A=\frac{1}{5}+\frac{1}{15}+...+\frac{1}{10000}\)

\(5A=1+\frac{1}{5}+...+\frac{1}{2000}\)

\(\rightarrow4A=1-\frac{1}{10000}\leftrightarrow A=\frac{1-\frac{1}{10000}}{4}\) TA CÓ: \(1-\frac{1}{10000}< 1< 3\)\(\rightarrow A< \frac{3}{4}\rightarrowĐPCM\)

Khách vãng lai đã xóa
Akai Haruma
7 tháng 7 2021 lúc 20:04

Lời giải:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(2A=\frac{2}{2^2}+\frac{2}{3^2}+....+\frac{2}{100^2}\)\(<\underbrace{ \frac{2}{2^2-1}+\frac{2}{3^2-1}+\frac{2}{4^2-1}+....+\frac{2}{100^2-1}}_{M}\)

Mà:

\(M=\frac{2}{1.3}+\frac{2}{2.4}+\frac{2}{3.5}+\frac{2}{4.6}+....+\frac{2}{99.101}\)

\(=\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)+\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)

\(=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-....+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\left(1-\frac{1}{101}\right)+\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{3}{2}-\frac{1}{101}-\frac{1}{100}< \frac{3}{2}\)

Do đó: $2A< \frac{3}{2}\Rightarrow A< \frac{3}{4}$