Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy trần
Xem chi tiết
Nguyễn Ngọc Thảo Nguyên
Xem chi tiết
Phúc Nguyễn
16 tháng 1 2018 lúc 12:42

\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)

\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)

\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)

Nguyễn Ngọc Thảo Nguyên
Xem chi tiết
ST
15 tháng 1 2018 lúc 21:24

\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)

\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)

\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)

Vũ Thị Thùy Linh
23 tháng 4 2018 lúc 8:18

bn ST 400 ở đâu ra vậy bn

ST
7 tháng 2 2019 lúc 18:59

BC=20 => BC^2 = 400

@@Hiếu Lợn Pro@@
Xem chi tiết

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:

BC2=AB2+CA2

<=>400=AB2+CA2

Theo giả thiết: 4AB=3AC

=>AB3=AC4AB3=AC4

=>AB29=AC216AB29=AC216

Theo tính chất dãy tỉ số bằng nhau,ta có:

AB29=AC216=AB2+AC29+16=BC225=40025=16AB29=AC216=AB2+AC29+16=BC225=40025=16

Với AB29=16=>AB=12AB29=16=>AB=12

Với AC216=16=>AC=16AC216=16=>AC=16

Vậy AB=12cm

AC=16cm

Khách vãng lai đã xóa
hihi
13 tháng 3 2020 lúc 9:59

🤬★๖ۣۜ V ๖ۣۜ★•™❄(TEAM★BTS)❄•🧨 chép mạng nhớ ghi nguồn

Khách vãng lai đã xóa
Phước Lộc
13 tháng 3 2020 lúc 9:59

ta có tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=20^2=400\) (1)

lại có 4AB = 3AC hay \(AB=\frac{3}{4}AC\)

thế \(AB=\frac{3}{4}AC\)vào (1) ta được:

\(\left(\frac{3}{4}AC\right)^2+AC^2=400\)

\(\frac{9}{16}AC^2+AC^2=400\)

\(\frac{25}{16}AC^2=400\)

\(AC^2=256\)

\(\orbr{\begin{cases}AC=\sqrt{256}=16\\AC=-\sqrt{256}=-16\left(loai\right)\end{cases}}\)

Vậy AC = 16 (cm)

=> AB = \(\frac{3}{4}AC=\frac{3}{4}.16=12\)(cm)

Khách vãng lai đã xóa
Nguyễn Ngọc Minh Hương
Xem chi tiết
huỳnh minh quí
28 tháng 1 2016 lúc 19:32

 Do tam giác ABC là tam giác vuông nên theo định lý Pytago có: BC^2=AB^2+AC^2(1). Mà theo gt 4AB=3AC=>AC=4AB/3 (2). Thay vao (1), ta co BC^2=AB^2+(4AB/3)^2<=>20^2=(25(AB^2))/9 <=> AB=12. Thay AB vao (2) =>AC=16.

Nguyễn Ngọc Minh Hương
28 tháng 1 2016 lúc 19:41

cho mình hỏi, 25 trong cái vế bạn thay vào ở đâu z

jhwbsbsnzm
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
ngoc rong thử chơi nhan
Xem chi tiết
 Mashiro Shiina
3 tháng 3 2018 lúc 1:04

Tam giác ABC vuông tại A suy ra: \(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+AC^2=400\)

Vì: \(4AB=3AC\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=L>0\left(đặt\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB^2=9L^2\\AC^2=16L^2\end{matrix}\right.\)

\(\Rightarrow400=25L^2\Leftrightarrow L^2=16\Leftrightarrow L=4\left(L>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=12\\AC=16\end{matrix}\right.\)

Mai Nguyen
Xem chi tiết
Minh Nguyen
30 tháng 1 2020 lúc 22:33

                       A B C H 20 cm 9cm 16 cm

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :

\(\Rightarrow\)AC2 = HC2 + AH2

\(\Rightarrow\)202  = 162 + AH2

\(\Rightarrow\)AH2 = 400 - 256

\(\Rightarrow\)AH2 = 144

\(\Rightarrow\)AH = 12 (cm)

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :

\(\Rightarrow\)AB2 = AH2 + HB2

\(\Rightarrow\)AB2 = 122 + 92

\(\Rightarrow\)AB2 = 225

\(\Rightarrow\)AB   = 15 (cm)

Vậy AB = 15 cm; AH = 12 cm

Khách vãng lai đã xóa
Mai Nguyen
31 tháng 1 2020 lúc 8:08

cảm ơn bạn rất nhiều!

Khách vãng lai đã xóa