Cho tam giác ABC vuông ở A. biết BC=20cm và 4AB = 3AC. Tính độ dài các cạnh AB,AC.
Cho tam giác ABC vuông tại A. Biết BC = 20 cm và 4AB = 3AC. Tính độ dài cạnh AB, AC
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB,AC
\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)
\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)
\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB và AC
\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)
\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)
\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB và AC
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:
BC2=AB2+CA2
<=>400=AB2+CA2
Theo giả thiết: 4AB=3AC
=>AB3=AC4
=>AB29=AC216
Theo tính chất dãy tỉ số bằng nhau,ta có:
AB29=AC216=AB2+AC29+16=BC225=40025=16
Với AB29=16=>AB=12
Với AC216=16=>AC=16
Vậy AB=12cm
AC=16cm
🤬★๖ۣۜ V ๖ۣۜ★•™❄(TEAM★BTS)❄•🧨 chép mạng nhớ ghi nguồn
ta có tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=20^2=400\) (1)
lại có 4AB = 3AC hay \(AB=\frac{3}{4}AC\)
thế \(AB=\frac{3}{4}AC\)vào (1) ta được:
\(\left(\frac{3}{4}AC\right)^2+AC^2=400\)
\(\frac{9}{16}AC^2+AC^2=400\)
\(\frac{25}{16}AC^2=400\)
\(AC^2=256\)
\(\orbr{\begin{cases}AC=\sqrt{256}=16\\AC=-\sqrt{256}=-16\left(loai\right)\end{cases}}\)
Vậy AC = 16 (cm)
=> AB = \(\frac{3}{4}AC=\frac{3}{4}.16=12\)(cm)
Cho tam giác vuông tại A. Biết BC=20cm; 4AB=3AC. Tính AB; AC
Do tam giác ABC là tam giác vuông nên theo định lý Pytago có: BC^2=AB^2+AC^2(1). Mà theo gt 4AB=3AC=>AC=4AB/3 (2). Thay vao (1), ta co BC^2=AB^2+(4AB/3)^2<=>20^2=(25(AB^2))/9 <=> AB=12. Thay AB vao (2) =>AC=16.
cho mình hỏi, 25 trong cái vế bạn thay vào ở đâu z
cho tam giác ABC vuông tại A.Tính cạnh BC nếu biết :,AB/3=AC/4 và AB+AC=14
b,4AB=3AC và AB+AC=70
c,AB/AC=4/3 và 4AB+3AC=25căn bậc 2
Giải giúp mình với ạ:
Cho tam giác ABC vuông ở A, biết BC=20cm và 4xab = 3xAC. Tính độ dài cạnh AB và AC.
Cho tam giác ABC vuông tại A. Biết BC = 20cm và 4AB = 3AC. Tính độ dài các cạnh AB, AC.
Tam giác ABC vuông tại A suy ra: \(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=400\)
Vì: \(4AB=3AC\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=L>0\left(đặt\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AB^2=9L^2\\AC^2=16L^2\end{matrix}\right.\)
\(\Rightarrow400=25L^2\Leftrightarrow L^2=16\Leftrightarrow L=4\left(L>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AB=12\\AC=16\end{matrix}\right.\)
Cho tam giác ABC vuông ở A. Kẻ AH vuông góc với BC. Biết AC = 20cm, BH = 9cm, CH = 16cm. Tính độ dài cạnh AB, AH
*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :
\(\Rightarrow\)AC2 = HC2 + AH2
\(\Rightarrow\)202 = 162 + AH2
\(\Rightarrow\)AH2 = 400 - 256
\(\Rightarrow\)AH2 = 144
\(\Rightarrow\)AH = 12 (cm)
*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :
\(\Rightarrow\)AB2 = AH2 + HB2
\(\Rightarrow\)AB2 = 122 + 92
\(\Rightarrow\)AB2 = 225
\(\Rightarrow\)AB = 15 (cm)
Vậy AB = 15 cm; AH = 12 cm
cảm ơn bạn rất nhiều!