Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VRCT_Mối Tình Mùa Đông_S...
Xem chi tiết
Nguyễn Thành Long
15 tháng 3 2017 lúc 21:35

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

Đinh Phương Linh
Xem chi tiết
pham trung thanh
19 tháng 11 2017 lúc 10:34

Bạn nhân 4 lên rồi tách ra hằng đẳng thức

Phúc
19 tháng 11 2017 lúc 10:48

Ta có 

A=x2+xy+y2-3x-3y+2016

=>4A=4x2+4xy+y2 -6(2x+y) + 9 + 3(y2-2y+1) +8052

         =(2x+y)2-6(2x+y)+9 + 3(y-1)2 +8052 

        =(2x+y-3)2+3(y-1)2+8052>= 8052

     =>A>=2013

Dấu bang xay ra khi x=y=1

Trịnh Quỳnh Nhi
19 tháng 11 2017 lúc 10:50

Ta có A= x2+xy+y2+3x-3y+2016

=> 2A= 2x2+2xy+2y2+6x-6y+4032

=> 2A=(x2+2xy+y2)+(x2+6x+9)+(y2-6y+9)+ 4014

=> 2A= (x+y)2+ (x+3)2+(y-3)2+4014

=> 2A >= 4014=> A>=2007

Dấu "=" xảy ra khi x=-3; y=-3

Nguyễn Khánh Linh
Xem chi tiết
Phạm Nguyễn Tất Đạt
18 tháng 12 2016 lúc 16:50

Đặt \(A=\left|4-2x\right|-2016\)

Ta có:\(\left|4-2x\right|\ge0\Rightarrow\left|4-2x\right|-2016\ge0-2016=-2016\Rightarrow A\ge-2016\)

\(\Rightarrow MIN_A=-2016\Leftrightarrow4-2x=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

Vậy MINA=-2016 khi x=2

Trần Ái Linh
Xem chi tiết
Lê Minh Anh
26 tháng 8 2016 lúc 11:41

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15 

Mà: x2\(\ge\)0  => x2 - 15\(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0

Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Ngô Phương Anh
Xem chi tiết
Nhật Hạ
15 tháng 10 2019 lúc 21:50

Vì x2 ≥ 0 => 2x2 ≥ 0 ; |y - 2| ≥ 0 => 3|y - 2| ≥ 0

=> (2x2 + 3|y - 2|) ≥ 0

=>  (2x2 + 3|y - 2|) - 2016 ≤ 2016

Dấu " = " xảy ra <=> 2x2 = 0 và 3|y - 2| = 0

                          <=> x2 = 0          |y - 2| = 0

                          <=> x = 0             y - 2 = 0

                          <=> x = 0             y = 2

Vậy GTLN C = 2016 khi x = 0; y = 2

b, Ta có: \(D=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\) 

Vì x2 ≥ 0 => x2 + 3 ≥ 3

=> \(\frac{12}{x^2+3}\le\frac{12}{3}=4\)

=> \(1+\frac{12}{x^2+3}\le1+4=5\)

Dấu " = " xảy ra <=> x2 = 0 <=> x = 0

Vậy GTNN của D = 5 khi x = 0

Đề ngược?? 

                            

Kan
15 tháng 10 2019 lúc 21:52

kết luận câu b sửa lại thành GTLN D = 5 khi x = 0

Trang Nguyễn Ngọc Kiều
Xem chi tiết
Quỳnh Anh
19 tháng 2 2021 lúc 12:49

Trả lời:

Bài 1: a,

\(A=\left|x-1\right|+3\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)

Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)

Vậy GTNN của A = 3 khi x = 1

\(B=\left|x-7\right|-4\)

Vì \(\left|x-7\right|\ge0\forall x\)

  \(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)

Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)

Vậy GTNN của B = -4 khi x = 7

b, \(C=-\left|x-3\right|+2\)

Vì \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)

Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)

Vậy GTLN của C = 2 khi x = 3

Khách vãng lai đã xóa
Nguyễn Kiều Trang
Xem chi tiết
Cao Van Minh
23 tháng 5 2017 lúc 19:25

kkkkkkkkkkkkkkkkkk

Cao Van Minh
23 tháng 5 2017 lúc 19:27

wopdjoqwedi

Trà My
23 tháng 5 2017 lúc 23:35

Ta có:

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\Rightarrow\frac{1}{\left|x-2016\right|+2018}\le\frac{1}{2018}\)

=>\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge\frac{2017}{2018}\)

=>\(A_{min}=\frac{2017}{2018}\)<=>|x-2016|=0<=>x-2016=0<=>x=2016

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự