Chứng minh rằng 1/3 + 1/3^2 + ... + 1/3^99 <1/2
chứng minh rằng 1/3+1/3^2+1/3^3+...+1/3^99<1/2
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)
Vậy \(A< \frac{1}{2}.\)
Chúc bạn học tốt!
Chứng minh rằng : A = 1/3+1/3^2+1/3^3+...+1/3^99<1/2
chứng minh rằng :
1/2!.3! + 2/1!.2!.3! + ... + 99/98!.99!.100! < 1
chứng minh rằng M=1/3+1/3^2+1/3^3+......+1/3^99 < 1/2
M=1/3+1/3^2+...+1/3^99
3M=1+1/3+1/3^2+...+1/3^98
3M+1/3^99=1+1/3+...+1/3^99=1+M
3M-M=1-1/3^99
2M=1-1/3^99
M=(1-1/3^99)/2
Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2
Vậy M<1/2
cho A: 1/3+1/3^2+1/3^3+...+1/3^99 chứng minh rằng A<1/2
cho C=1/3+1/3^2+1/3^3+...+1/3^99.Chứng minh rằng C<1/2
Chứng minh rằng 100- ( 1 + 1/2 +1/3 +...+1/100) = 1/2 +2/3 +3/4 +...+99/100
ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết
ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho BTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho BTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho BTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
chứng minh rằng 100-(1+1/2+1/3+...+1/100)=1/2+2/3+3/4+...+99/100
Bạn cộng biểu thức trong ngoặc của vế trái với vế phải là ra 100
Ta có:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}=...+\frac{1}{100}\right)\)
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)