Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2017 lúc 7:30

Tạ Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 0:26

Ta có: \(x^4-8x^3+21x^2-24x+9=0\)

\(\Leftrightarrow x^4-5x^3+3x^2-3x^3+15x^2-9x+3x^2-5x+9=0\)

\(\Leftrightarrow\left(x^2-5x+3\right)\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow x^2-5x+3=0\)

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot3=25-12=13\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{13}}{2}\\x_2=\dfrac{5+\sqrt{13}}{2}\end{matrix}\right.\)

Tự Thị Trang
Xem chi tiết
Phạm Thị Mỹ Duyên
Xem chi tiết
Lưu Hiền
7 tháng 6 2018 lúc 22:08

\(x^4+9x^2=0\left(1\right)\\ < =>x^2\left(x^2+9\right)=0\\ < =>\left[{}\begin{matrix}x^2=0\\x^2+9=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2+9=0\left(2\right)\end{matrix}\right.\)

\(x^2\ge0\forall x\\ =>x^2+9>0\)

mâu thuẫn với (2)

=> (2) vô nghiệm

vậy ...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 4 2017 lúc 12:46

a) Ta có:  Δ = 196 > 0     

Phương trình có 2 nghiệm  x 1 = 3 ,   x 2 = 1 5

b) Đặt  t = x 2 ,   t ≥ 0 , phương trình trở thành  t 2 + 9 t − 10 = 0

Giải ra được t=1 (nhận); t= -10 (loại)

Khi t=1, ta có  x 2 = 1 ⇔ x = ± 1 .

c)  3 x − 2 y = 10 x + 3 y = 7 ⇔ 3 x − 2 y = 10         ( 1 ) 3 x + 9 y = 21       ( 2 )

(1) – (2) từng vế ta được: y=1

Thay y= 1 vào (1) ta được x= 4

Vậy hệ phương trình có nghiệm duy nhất là x= 4; y= 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2019 lúc 1:57

Cả ba phương trình trên đều là phương trình trùng phương.

a)  3 x 4   –   12 x 2   +   9   =   0   ( 1 )

Đặt x 2   =   t ,  t ≥ 0.

(1) trở thành:  3 t 2   –   12 t   +   9   =   0   ( 2 )

Giải (2):

Có a = 3; b = -12; c = 9

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1   v à   t 2   =   3 .

Cả hai nghiệm đều thỏa mãn điều kiện.

+ t = 3 ⇒ x 2 = 3 ⇒ x = ± 3 + t = 1 ⇒ x 2 = 1 ⇒ x = ± 1

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  2 x 4   +   3 x 2   –   2   =   0   ( 1 )

Đặt x 2   =   t , t ≥ 0.

(1) trở thành:    2 t 2   +   3 t   –   2   =   0   ( 2 )

Giải (2) :

Có a = 2 ; b = 3 ; c = -2

⇒   Δ   =   3 2   –   4 . 2 . ( - 2 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

t 1   =   - 2   <   0  nên loại.

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)  x 4   +   5 x 2   +   1   =   0   ( 1 )

Đặt  x 2   =   t ,   t   >   0 .

(1) trở thành:  t 2   +   5 t   +   1   =   0   ( 2 )

Giải (2):

Có a = 1; b = 5; c = 1

⇒   Δ   =   5 2   –   4 . 1 . 1   =   21   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 3 2018 lúc 9:05

b) x 4 - 5 x 2  + 4 = 0

Đặt t = x 2  ≥ 0 , ta có phương trình:

t 2  - 5t + 4 = 0 (dạng a + b + c = 1 -5 + 4 = 0)

t 1 = 1 (nhận) ; t 2 = 4 (nhận)

với t = 1 ⇔ x 2  = 1 ⇔ x = ± 1

với t = 4 ⇔  x 2  = 4 ⇔ x = ± 2

Vậy nghiệm của phương trình x = ±1; x = ± 2

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 23:42

e: =>x(x^3-4x^2-8x+8)=0

=>x[(x^3+8)-4x(x+2)]=0

=>x(x+2)(x^2-2x+4-4x)=0

=>x(x+2)(x^2-6x+4)=0

=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)

g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0

=>(2x+5)(x^3-3x^2+3x-1)=0

=>(2x+5)(x-1)^3=0

=>x=1 hoặc x=-5/2

h: =>(x^2+8x+7)(x^2+8x+15)+15=0

=>(x^2+8x)^2+22(x^2+8x)+120=0

=>(x^2+8x+10)(x^2+8x+12)=0

=>(x^2+8x+10)(x+2)(x+6)=0

=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)

Người Vô Tâm
Xem chi tiết
Hồng Quang
13 tháng 7 2019 lúc 10:57

Giải phương trình??? sử dụng Hooc-ne cho nhanh nhá :v

1) \(x^4-8x^2+4x+3=0\)

( dùng máy tính ta đoán được 1 nghiệm chính xác là -3 )

3 1 0 -8 4 3 1 -3 1 1 0

\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3-3x^2+x+1=0\left(2\right)\end{matrix}\right.\)

Tiếp tục dùng máy tính ta tìm được 1 nghiệm chính xác của pt ( 2 ) là 1

1 1 -3 1 1 1 -2 -1 0

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)

rồi mấy câu còn lại tương tự