Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thuy Thủy
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Selina Moon
6 tháng 5 2016 lúc 8:34

Huyền ơi đề bài sai nặng rồi hỏi lại đi bài 1

Karry Karry
4 tháng 5 2016 lúc 19:21

bạn ơi đề bài này có đúng không bài 1 ý

 

Nguyễn Thị Huyền
4 tháng 5 2016 lúc 19:41

đúng mà mình đăng từ đề cương thầy giáo cho ôn thi mà

Nguyễn Thị Hằng
Xem chi tiết
minh son
Xem chi tiết
tth_new
21 tháng 7 2019 lúc 8:43

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

tth_new
21 tháng 7 2019 lúc 9:03

A, nghĩ ra rồi nè:) (đúng hay không là chuyện khác:v)

Bỏ cái dòng "Thật vậy, từ N hạ NF vuông góc với BC, hạ NG vuông góc với AB" đi nha, thừa thãi không cần thiết => gây khó bài toán.

d)Ta sẽ chứng minh \(\Delta NHM=\Delta NKM;\Delta MHD=\Delta MKA\)

Xét  \(\Delta\) NHM và \(\Delta\) NKM  có:

^NKM = ^NHM = 90o

NM là cạnh chung đồng thời là cạnh huyền

^NMK = ^NMH (chứng minh trên câu c: MN là tia phân giác góc HMK)

Suy ra   \(\Delta\) NHM = \(\Delta\) NKM  (cạnh huyền - góc nhọn)

Suy ra NK = NH (1) và MK = MH (2)

Xét \(\Delta\)MHD và \(\Delta\) MKA có:

MK = MH (chứng minh ở (2))

^KMA = ^HMD (đối đỉnh)

MA = MD (do tam giác DBM = tam giác ABM ,đã chứng minh ở câu a)

Suy ra  \(\Delta\)MHD = \(\Delta\) MKA  (c.g.c)  (nếu ko thì bạn có thể chứng minh theo trường hợp cạnh huyền góc nhọn cũng ra nhé)

Suy ra KA = HD (3)

Từ (1) và (3) suy ra KA + NK = HD + MH tức là AN = ND.

Tới đây dễ dàng chứng minh được \(\Delta NDB=\Delta NAB\left(c.c.c\right)\Rightarrow\widehat{NBD}=\widehat{NBA}\) suy ra BN là tia phân giác góc B.

Kết hợp với BM là tia phân giác góc B (giả thiết) ta có đpcm.

Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2022 lúc 0:33

Bài 2: 

a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có 

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOHA=ΔOHB

Suy ra: HA=HB

hay ΔHAB cân tại H

b: Xét ΔOAB có

OH là đường cao

AD là đường cao

OH cắt AD tại C

Do đó: C là trực tâm của ΔOAB

Suy ra: BC\(\perp\)Ox

c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)

Xét ΔOHA vuông tại A có 

\(\cos HOA=\dfrac{OA}{OH}\)

\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)

Trần Hoàng Vy
Xem chi tiết
anhduc1501
26 tháng 4 2018 lúc 11:06

a) xét tam giác ABI và tam giác KBI có:

góc A = góc K  =90 độ

BI chung

góc ABI = góc KBI ( BI là phân giác góc B)

=> tam giác ABI =tam giác KBI ( cạnh huyền- góc nhọn)

b) xét tam giác AMI và tam giác KCI có:

góc A= góc K =90 độ

AI=IK (tam giác ABI =tam giác KBI)

góc AIm= góc KIC ( đối đỉnh)

=>tam giác AMI =tam giác KCI ( g-c-g)

=> IM=IC

c) vì AI< IM( cạnh góc vg nhỏ hơn cạnh huyền) 

mà IM=IC => AI<IC

d) áp dụng Đl Pytago vào tam giác ABC có \(AB^2+AC^2=BC^2=>AB=12cm\)

HUNG
Xem chi tiết
Đợi anh khô nước mắt
Xem chi tiết
Nguyen Hai Dang
15 tháng 2 2016 lúc 19:17

Bai 1:

Ap dung dinh li Py-ta-go vao tam giac AHB ta co:

AH^2+BH^2=AB^2

=>12^2+BH^2=13^2

=>HB=13^2-12^2=25

Tuong tu voi tam giac AHC

=>AC=20

=>BC=25+16=41

Nguyen Ngoc
Xem chi tiết
nguyễn an phát
21 tháng 4 2021 lúc 11:43

xét ΔABH và ΔMBH có:

\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o

BH là cạnh chung

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))

⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)

⇒BM=AB(2 cạnh tương ứng)

⇒ΔABM cân tại B

\(\widehat{ABM}\)=\(\widehat{MAB}\)

gọi I là giao điểm của AM và BH

xét ΔMBI và ΔABI có

AB=BM(ΔABH=ΔMBH)

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))

\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)

⇒ΔMBI=ΔABI (g-c-g)

\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)

Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)

Từ (1) và (2) \(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o

⇒BH⊥AM (Điều phải chứng minh)

xét ΔCMH và ΔNAH có:

\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o

\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)

AH=HM(ΔABH=ΔMBH)

⇒ΔCMH=ΔNAH(g-c-g)

⇒HC=HN(2 cạnh tương ứng)

⇒ΔCHN cân tại H

\(\widehat{NCH}\)=\(\widehat{CNH}\)

vì ΔABH=ΔMBH

⇒AH=HM(2 cạnh tương ứng)

⇒ΔAHM cân tại H

\(\widehat{HMA}\)=\(\widehat{HAM}\)

xét ΔNHC và ΔMHA có

\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)

\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)

Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)

\(\widehat{HMA}\)=\(\widehat{NCH}\)

⇒AM // CN (điều phải chứng minh)