Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Bài 11. Cho biểu thức M = \(\dfrac{3\sqrt{x}+1}{\sqrt{x}+3}\) với 𝑥 ≥ 0; 𝑥 ≠ 9. Tìm số thực x để M là số nguyên
Bài 12. Cho biểu thức N = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) với 𝑥 ≥ 0; 𝑥 ≠ 25. Chứng minh rằng không tồn tại giá trị của x để N là số nguyên.
Bài 12:
Để N là số nguyên thì \(\sqrt{x}+3⋮\sqrt{x}+5\)
\(\Leftrightarrow-2⋮\sqrt{x}+5\)
\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2\right\}\)(vô lý
Bài 11:
Để M là số nguyên thì \(3\sqrt{x}+1⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)
\(\Leftrightarrow x\in\left\{1;25\right\}\)
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
Bài 6:
Để D nguyên thì \(x-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\)
hay \(x\in\left\{0;1\right\}\)
Bài 4. Cho biểu thức M = \(\dfrac{\sqrt{x+2}}{2\sqrt{x}-3}\)với 𝑥 ≥ 0; 𝑥 ≠ 9 4 . Tìm gía trị nguyên của x để M có giá trị là một số tự nhiên
Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$
$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$
$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$
Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên
$\Rightarrow 3M-2\vdots 2M-1$
$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$
$\Rightarrow 2M-1\in\left\{\pm 1\right\}$
$\Rightarrow M=0;1$
$\Leftrightarrow x=4; 1$ (đều tm)
Bài 10. Cho biểu thức P = \(\dfrac{2\sqrt{x-3}}{\sqrt{x}+2}\) với 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm các giá trị của x để P có giá trị nguyên.
Để P nguyên thì \(2\sqrt{x}-3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2=7\)
hay x=25
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
2) Với \(x>0;x\ne4;x\ne9\), ta có:
A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-x}{x-2\sqrt{x}+2}\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
b: Ta có: P=A:B
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Bài 1: cho biểu thức
P = \(\dfrac{x+3}{\sqrt{x}-2}\) và Q = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\) với x>0, x≠4
Ta có : \(P=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)ĐK : \(x\ge0;x\ne4\)
Thay x = 9 vào P ta được
\(P=\dfrac{\sqrt{9}+3}{\sqrt{9}-2}=\dfrac{6}{1}=6\)
Với \(x>0;x\ne4\)
\(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Bài 1 :Cho hai biểu thức\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và\(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\) với x≥ 0; x≠1
a. Tính giá trị của biểu thức A khi x = 4
b. Chứng minh\(\dfrac{2}{\sqrt{x}+1}\)
Bài 2:
Cho biểu thức:\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn P
Bài 2:
Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
Bài 1:Tìm ĐKXĐ:
a.\(\sqrt{3x}\)
b.\(\sqrt{\dfrac{x-1}{x+3}}\)
Bài 2:Thực hiện phép tính:
C=\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Bài 3:
A=(1-\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)):(\(\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{x-4}\)) với x>0;x≠4
a.Rút gọn A
b.Tính giá trị của A khi x =\(\dfrac{1}{4}\)
c. Chứng minh A<2
d.Tìm giá trị nguyên của x để A nguyên.
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Bài 1:
a. ĐKXĐ: $3x\geq 0$
$\Leftrightarrow x\geq 0$
b. ĐKXĐ: $\frac{x-1}{x+3}\geq 0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x-1\geq 0\\ x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} x-1\leq 0\\ x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 1\\ x< -3\end{matrix}\right.\)
Bài 2:
\(C=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{2+2\sqrt{2.3}+3}-\sqrt{2-2\sqrt{2.3}+3}\)
\(=\sqrt{(\sqrt{2}+\sqrt{3})^2}-\sqrt{(\sqrt{2}-\sqrt{3})^2}\)
\(=|\sqrt{2}+\sqrt{3}|-|\sqrt{2}-\sqrt{3}|=(\sqrt{2}+\sqrt{3})-(\sqrt{3}-\sqrt{2})\)
\(=2\sqrt{2}\)
Bài 3:
a.
\(A=\frac{2}{\sqrt{x}+2}:\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right]\)
\(=\frac{2}{\sqrt{x}+2}:\frac{\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{2}{\sqrt{x}+2}.\frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}}=\frac{2(\sqrt{x}-2)}{\sqrt{x}}\)
b. Khi $x=\frac{1}{4}$ thì $\sqrt{x}=\frac{1}{2}$.
Khi đó $A=\frac{2(\frac{1}{2}-2)}{\frac{1}{2}}=-6$
c.
$A=\frac{2(\sqrt{x}-2)}{\sqrt{x}}=2-\frac{4}{\sqrt{x}}$
$< 2$ do $\frac{4}{\sqrt{x}}>0$
Ta có đpcm
d. Với $x$ nguyên, để $A$ nguyên thì $\sqrt{x}$ là ước của $4$
$\Leftrightarrow \sqrt{x}\in\left\{1;2;4\right\}$
$\Rightarrow x\in\left\{1;4;16\right\}$ (đều tm)