Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Đỗ
Xem chi tiết
missing you =
17 tháng 7 2021 lúc 15:19

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

Nguyễn Nhị Hà
Xem chi tiết
Thanh Tùng DZ
25 tháng 4 2018 lúc 9:43

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

tham khảo nhé

Attems
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 12:58

\(P=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(P=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(x^2+y^2+z^2\right)}\)

\(P\ge\dfrac{x^2+y^2+z^2}{10}\ge\dfrac{1}{30}\)

\(P_{min}=\dfrac{1}{30}\) khi \(x=y=z=\dfrac{1}{3}\)

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Linh Chi
11 tháng 1 2019 lúc 10:19

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

Tham khảo ơ link này nhé!

Trần Ngọc Linh
Xem chi tiết
Tạ Đức Hưng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Lâm Linh Ngọc
21 tháng 6 2021 lúc 21:51

Má mày giúp tao bài tao gửi đii:(

Khách vãng lai đã xóa
Đoàn Đức Hà
21 tháng 6 2021 lúc 22:03

Ta có bất đẳng thức: với \(x,y>0\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dấu \(=\)khi \(x=y\).

Áp dụng bất đẳng thức trên ta được: 

\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)

\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)

Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được: 

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2018 lúc 14:24

Đáp án là A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2018 lúc 7:14

Xét các bộ số ( x,y,z ) = log 2 a , log 3 b log 5 c trong đó a, b, c là hoán vị của { 2;3;5 }. Với các bộ số này thì điều kiện thứ ba của bài toán luôn được thỏa mãn.

Ta lại thấy

2 x + 3 y + 5 z = 2 log 2 a + 3 log 3 b + 5 log 5 c = a + b + c = 2 + 3 + 5 = 10

2 x . 3 y . 5 z = 2 log 2 a . 3 log 3 b . 5 log 5 c = a b c = 2 . 3 . 5 = 30

Do đó các bộ xác định như trên luôn thỏa mãn các điều kiện đã cho. Do đó số các hoán vị của { 2;3;5 } là 3! = 6

Đáp án cần chọn là C