3n+3n+2=270
\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{3n+5-3n-2}{\left(3n+2\right)\left(3n+5\right)}=\frac{3}{\left(3n+2\right)\left(3n+5\right)}giainhuthedungko\)sai sử giúp nhé thank
Chắc có lẽ bạn định làm như này:
\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{3}{3\left(3n+2\right)\left(3n+5\right)}=\frac{\left(3n+5\right)-\left(3n+2\right)}{3\left(3n+2\right)\left(3n+5\right)}=\frac{1}{3}\left[\frac{1}{3n+2}-\frac{1}{3n+5}\right]\)
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)
\(^{3^{3n+2}-2^{3n+2}+3^{3n}-2^{3n}⋮10}\)
Đặt \(A=3^{3n+2}-2^{3n+2}+3^{3n}-2^{3n}\) ta có :
\(A=\left(3^{3n+2}+3^{3n}\right)-\left(2^{3n+2}+2^{3n}\right)\)
\(A=\left(3^{3n}.3^2+3^{3n}\right)-\left(2^{3n}.2^2+2^{3n}\right)\)
\(A=3^{3n}\left(3^2+1\right)-2^{3n}\left(2^2+1\right)\)
\(A=3^{3n}.10-2^{3n}.5\)
\(A=5\left(3^{3n}.2-2^{3n}\right)⋮5\) \(\left(1\right)\)
Lại có :
\(3^{3n}.2⋮2\)
\(2^{3n}⋮2\)
\(\Rightarrow\)\(3^{3n}.2-2^{3n}⋮2\)
\(\Rightarrow\)\(A=5\left(3^{3n}.2+2^{3n}\right)⋮2\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(A\) chia hết cho \(2\) và \(5\)
\(\Rightarrow\)\(A⋮10\) ( đpcm )
Vậy \(A⋮10\)
Chúc bạn học tốt ~
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)
Cho: 3n-5 = 3n-3-2 = (3n-3)-2 = (3n-1)-2
Từ cách phân tích trên hãy phân tích 2n+1
tìm lim (1/căn(3n^2+1) +1/căn(3n^2+2^2) +...+1/căn(3n^2n^2)
Rút gọn : 3n-3/5-3n +5: 5-3n/2
C/m:
\(\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{9}.....\dfrac{3n-2}{3n}.\dfrac{3n+1}{3n+3}< \dfrac{1}{\sqrt{3n+1}}\)
Tìm n thuộc N
a, 3n+2 chia hết 3n+5
b, 2n2+6n-2 chia hết 3n+2
c, n+1 chia hết 3n-1
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)