Giai phuong trinh
\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
Giai giup minh cac phuong trinh nay voi a !!!! hepl pls
a) P = \(\left\{x\in R|x^4-3x^3-6x^2+3x+1=0\right\}\)
b) Q=\(\left\{x\in R|\text{x^4 + 6x^3 + 6x^2 -6x +1 = 0 }\right\}\)
Giai phuong trinh:
\(28+\sqrt[3]{x^2}=3x+2\sqrt[3]{x}+\left(x-4\right)\sqrt{x-7}\)
Giai phuong trinh :
\(2\left(x^2-3x-1\right)-7\sqrt{x^3-1}=0\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
Giai phuong trinh va he phuong trinh:
a) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
b) \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
c) \(\left\{{}\begin{matrix}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{matrix}\right.\)
Giai phuong trinh giup minh 3 cau nay voi
a,\(3x\left(2-\sqrt{4}\right)=3\left(\sqrt{4}x+1\right)\)
b,\(\left(5-x\right).\left(\sqrt{3}+x\right)-5=0.\)
c,\(\left(x^2-2x\right)+\left(-4+8x\right)=0.\)
giai phuong trinh
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow x^2-4x+4-x^2+4=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{x-2}=b;\) ta có:
\(2a^2-b^2=ab\) ⇔ \(2a^2-ab-b^2=0\)
\(\Leftrightarrow2a^2+ab-2ab-b^2=0\)
⇔ \(\left(2a+b\right)\left(a-b\right)=0\)
⇔ \(\left[{}\begin{matrix}2\sqrt[3]{x+2}=-\sqrt[3]{x-2}\\\sqrt[3]{x-2}=\sqrt[3]{x+2}\end{matrix}\right.\)⇔ \(x=-\frac{14}{9}\)
giai phuong trinh \(\sqrt{x\left(x-3\right)}-\sqrt{7x-3}=2\sqrt{x^2}\)
giai phuong trinh \(\left(x^2-4x+3\right)\left(x^2-6x+8\right)=8\)
\(\left(x^2-4x+3\right)\left(x^2-6x+8\right)=8\)
\(\left(x^2-3x-x+3\right)\left(x^2-4x-2x+8\right)=8\)
\(\left[x\left(x-3\right)-1\left(x-3\right)\right]\left[x\left(x-4\right)-2\left(x-4\right)\right]=8\)
\(\left(x-1\right)\left(x-3\right)\left(x-2\right)\left(x-4\right)=8\)
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=8\)
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-8=0\)
Đặt \(t=x^2-5x+4\)
\(t\left(t+2\right)-8=0\)
\(t^2+2t-8=0\)
\(t^2+4t-2t-8=0\)
\(t\left(t+4\right)-2\left(t+4\right)=0\)
\(\left(t+4\right)\left(t-2\right)=0\)
\(\orbr{\begin{cases}t+4=0\\t-2=0\end{cases}}\)
\(\orbr{\begin{cases}t=-4\\t=2\end{cases}}\)
\(\orbr{\begin{cases}x^2-5x+4=-4\\x^2-5x+4=2\end{cases}}\)
\(\orbr{\begin{cases}x^2-5x+8=0\left(ptvn\right)\\x^2-5x+2=0\end{cases}}\)
\(x^2-5x+2=0\)
\(\orbr{\begin{cases}x=\frac{5+\sqrt{17}}{2}\\x=\frac{5-\sqrt{17}}{2}\end{cases}}\)