Số dư khi chia đa thức \(x^{2017}+2017\) cho đa thức \(x+1\)
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+x^{2016}+1\) chia cho đa thức \(g\left(x\right)=x+1\)
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+2017x^2+2017x+1\) cho đa thức \(g\left(x\right)=x-1\) là
dam cong tian Làm giúp đi mk bó tay cái dạng này !! -_-
tìm dư của phép chia đa thức x^2017+x^2015-2 cho đa thức (x-1)(x+1)
Tìm dư khi chia đa thức x^2018-x^2017+17x+4 cho x+1
Tìm số dư khi chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\).
Giải: Định lý Bê-du : số dư trong phép chia đa thức f(x) cho nhị thức x - a đúng bàng f(a).
Hệ quả: Nếu a là nghiệm của đa thức f(x) thì f(x) chia hết cho x-a.
(Bạn không nhất thiết phải nêu định lí trong bài làm, mình chỉ nêu ra cụ thể cho bạn hiểu)
Áp dụng định lí Bê-du, ta có:
f(a) = f(-1) = (-1)2018 - (-1)2017 + 17.(-1) + 4
= 1 - 1 - 17 + 4 = -13
Vậy số dư trong phép chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\)
là -13.
Chúc bạn học tốt@@
Số dư khi chia f(x)=x2017 + 2017x2 + 2017x + 1 cho đa thức g(x)=x-1
tìm dư khi chia x2016 + x2017 - x2018 cho đa thức x2 - 1
đa thức f(x)chia x-2 dư 2016,chia x-3 dư 2017 còn chia (x-2)(x-3)thì được thương là x^2+1 và còn dư.hãy tìm đa thức f(x) và dư của phép chia f(x) cho (x-2)(x-3)
MỌI GIÚP MÌNH VỚI MINH ĐANG CẦN GẤP
THANK YOU
Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2
=> đa thức dư có bậc cao nhất là 1
=> G/s: đa thức dư là: r(x) = a x + b
Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b
Vì f ( x ) chia ( x - 2 ) dư 2016
=> f ( 2 ) = 2016 => a.2 + b = 2016 (1)
Vì f(x ) chia ( x - 3 ) dư 2017
=> f ( 3) = 2017 => a.3 + b = 2017 (2)
Từ (1) ; (2) => a = 1; b = 2014
=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014
và đa thức dư là: x + 2014
Chứng minh rằng đa thức P(x)= x^2017+x^2+1 chia hết cho đa thức Q(x)= x^2+x+1
\(P\left(x\right)=x^{2017}+x^2+1\)
\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.