Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+2017x^2+2017x+1\) cho đa thức \(g\left(x\right)=x-1\) là
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức: \(x^2-x+1\)
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
a)giải phương trình sau
\(\left(3x^2+x-2016\right)^2+4\left(x^2+506x-2017\right)^2=4\left(3x^2+x-2016\right).\left(x^2+506x-2017\right)\)
b) tìm đa thức f(x) biết rằng f(x) chia cho x+3 duw, f(x) chia cho x-2duw 6, f(x) chia cho x2+x-6 được thương là 2x và còm dư
Đa thức f\(\left(x\right)\) chia cho \(x+1\) thì dư 4, chia cho \(x^2+1\) thì dư \(2x+3\).
Tìm dư khi f\(\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)
Bài 1 : Tìm GTLN và GTNN của biểu thức \(A=\frac{27-12x}{x^2+9}\)
Bài 2 : Cho 2 số chính phương liên tiếp. Cmr : Tổng của 2 số đó + với tích của chúng = 1 số chính phương lẻ
Bài 3 : Cho đa thức \(F\left(x\right)=x^3+\text{ax}^2+bx+c\) (Với a, b, c ∈ R ). Biết đa thức F( x ) chia cho đa thức x + 1 dư - 4, đa thức F( x ) chia cho đa thức x - 2 dư 5
Hãy tính giá trị của \(A=\left(a^{2019}+b^{2019}\right)\left(b^{2020}-c^{2020}\right)\left(c^{2021}+a^{2021}\right)\)
Tìm số dư của phép chia đa thức:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2015\) cho đa thức \(x^2+8x+10\)
Tìm a và b để đa thức \(G\left(x\right)=x^6+ax^2+bx+2\) chia hết cho đa thức \(P\left(x\right)=x^2-x+1\)