Giải phương trình :
\(x^4=3x^2+10x+4\)
Giải phương trình : (x^2+3x-4)^3+(3x^2+7x+4)^3=(4x^2+10x)^3
Đặt \(\hept{\begin{cases}x^2+3x-4=a\\3x^2+7x+4=b\end{cases}\Rightarrow4x^2+10x=a+b}\)
\(\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3=\left(4x^2+10x\right)^3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow3ab\left(a+b\right)=0\)
Nếu \(a=0\Rightarrow x^2+3x-4=0\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Nếu \(b=0\Rightarrow3x^2+7x+4=0\Rightarrow3x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(3x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}\)
Nếu \(a+b=0\Rightarrow4x^2+10x=0\Rightarrow2x\left(2x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)
giải phương trình 3x^5-10x^4+3x^3+3x^2-10x+3=0
\(3x^5-10x^4+3x^3+3x^2-10x+3=0\)
___________
Nháp:
Ta nhẩm ngiệm ra được -1 vì tổng các hệ số có số mũ chẵn bằng tổng các hệ số có số mủ lẻ
\(\left\{{}\begin{matrix}3+3-10=-4\\-10+3+3=-4\end{matrix}\right.\)
Theo sơ đồ hoocner ta có:
3 | -10 | 3 | 3 | -10 | 3 | |
-1 | 3 | -13 | 16 | -13 | 3 | 0 |
\(\Rightarrow\left(x-1\right)\left(3x^4-13x^3+16x^2-13x+3\right)\)
Tiếp dùng phương pháp đoán nghiệm ta có thể phân tích thành
\(\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x-1\right)\)
_____________________________________
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
giải các phương trình sau:
a \(\sqrt{3x^2-17x+4}=3x-2\)
b \(2x^2-10x-3\sqrt{x^2-5x+4}+6=0\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Giải phương trình
x4-3x2-10x-4=0
Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
giải phương trình
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
ĐKXĐ: \(x\in R\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)
=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)
=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>
\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)
=>\(\left(x+1\right)^2=0\)
=>x+1=0
=>x=-1(nhận)
Giải phương trình sau
3/x^2+5x+4+2/x^2+10x+24+4/3+9/x^2+3x-18
Sửa đề:\(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}=\frac{9}{x^2+3x-18}\)
\(\Leftrightarrow\frac{3}{\left(x+1\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x-6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+6}-\frac{1}{x-3}+\frac{1}{x+6}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}=\frac{4}{3}\)
Tự giải tiếp
Quyên sai rồi, tử là 1 mới đc tách kiểu đó, mà 2 pt đó bằng 4/3 thì xét 1 pt thôi được rồi, bước 3 từ dưới lên sai bét
Giải phương trình :
x4 - 3x2 - 10x - 4 =0
Giải phương trình \(\sqrt{2\left(x^4+4\right)}=3x^2-10x+6\)
\(\sqrt{2\left(x^4+4\right)}=3x^2-10x+6\)
\(\Leftrightarrow\sqrt{2\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=3x^2-10x+6\)
Đặt \(x^2-2x+2=a\)
\(\Leftrightarrow\sqrt{2a\left(a+4x\right)}=3a-4x\)
\(\Leftrightarrow2a\left(a+4x\right)=\left(3a-4x\right)^2\)
\(\Leftrightarrow\left(7a-4x\right)\left(4x-a\right)=0\)