69 lớn hơn hoặc bằng a < b <71
giúp mình đi mình đg giải toán violympic
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
1)Với x>-3.Chứng minh :2x/3 + 9/(x-3)^2 lớn hơn hoặc bằng 1
2)Cho a lớn hơn hoặc bằng 3,ab lớn hơn hoặc bằng 6;abc lớn hơn hoặc bằng 6.Chứng minh rằng a+b+c lớn hơn hoặc bằng 6
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
tính tổng các số nguyên x bt
a) -2020 lớn hơn hocjw bằng x lớn hơn hoặc bằng 2021
b) a+3 lớn hơn hoặc bằng x lớn hơn hoặc bằng a+2020 (a thuộc N)
Cho a lớn hơn hoặc bằng 1 b lớn hơn hoặc bằng 1 chứng minh rằng a căn của B - 1 + b căn của A trừ 1 bé hơn hoặc bằng AB
Tìm tập hợp các số tự nhiên a đồng thời chia hết cho cả 2 và 5 biết:
a) 83 lớn hơn hoặc bằng a lớn hơn 196
b) 70 lớn hơn hoặc bằng a lớn hơn hoặc bằng 140
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
Cho a,b,c lớn hơn hoặc bằng 0. Chứng minh ( a+b )( b+c )( c+a ) lớn hơn hoặc bằng 8abc
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
Tìm x thuộc Z biết:
a,|x-2| nhỏ hơn hoặc bằng 2
b,|x-3| nhỏ hơn hoặc bằng 0
c,2 lớn hơn hoặc bằng |x-1| nhỏ hơn hoặc bằng 3
d, -1 lớn hơn hoặc bằng |x-2| nhỏ hơn hoặc bằng 2
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)